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Abstract

We describe a search algorithm for two-player games that relies on selectivity rather than brute-force to

achieve success. The key ideas behind the algorithm are:
1. Stopping when one alternative is clearly better than all the others, and

2. Focusing the search on the place where the most progress can likely be made toward being
able to stop.

Critical to this process is identifying uncertainty about the ultimate value of any move. The lower bound

on uncertainty is the best estimate of the real value of a move, while the upper bound is its optimistic
value, based on some measure of unexplored potential. Uncertainty is represented as probability

densities. The search develops those parts of the tree where moving existing bounds would be most
likely to succeed and make the most progress toward terminating the search. Termination is achieved
when the established real value of the best move is so good that the likelihood of this being achieved by

any other alternative is minimal.

The B* probability based search algorithm has been implemented on the chess machine Hitech. En
route we have developed effective techniques for:

"* Dealing with independence of alternative moves,

"* Producing viable optimistic estimates to guide the search and

"* Dealing with the Graph History Interaction problem.
This report describes the implementation, and the results of tests including games played against brute-

force programs. The data indicate that B* Hitech is a better pure selective searcher than anything
previously reported. Further, analysis of the data indicates that should additional power become
available, the B technique will scale up considerably better than brute-force techniques.
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1 Introduction
For the last several years, many interesting domains of Al have been engaged largely in trying to get

machines to do those things that two and three year olds find very easy to do. This has something to do
with certain primitive abilities that are difficult to capture algorithmically. The ability to recognize patterns,
and actuate plans based upon such patterns is crucial to even low level behavior. Computer systems
have trouble recognizing an "office scene" because they somehow don't "get" it is an office scene after
having identified a few key objects. They have similar problems in speech understanding and in playing
chess. The issue is always the same; if we only had more patterns and a plan to go with each, we would
be in good shape.

It has now become known that there are specialized parts of the human brain that support apparently
simple activities. For instance, in natural language there are specialized areas for verbs, nouns, and
sentence structure. Thus, it is no longer surprising that different languages share a lot of structure. This
makes it plausible to believe that mechanisms for important things are already in place in animals.

This is very likely true for playing chess also. When one examines verbal protocols of chess players
analyzing chess positions, one is struck by the similarity of form. DeGroot [13] shows that the form of the
analysis is very much alike, regardless of the strength of the player. What is different by player level is
the content; the stronger players look at better moves. Just as there are no books to tell a human how to
recognize an office scene, so there are no books to tell a human how to search. There are many chess
books that tell you what to look for, but none that tell you how to process what you look at. Apparently
such things are taken for granted.

Thus it appears that humans have a preferred form of chess analysis. This form is idea driven, and is
oriented toward comparing the presumed best move with the alternatives. In this paper, we show how
meat has been put on the bones of this concept. We show how ideas can be generated in ordinary
positions and how they compete for attention until the best idea is found.

As we develop it, an idea is an optimistic concept that may turn out to be feasible if some other things
work out. The value of an idea is represented by a probability density distribution of the likelihoods of the
values it could aspire to. This representation guides a selective search, and is in turn modified by it. This
paper develops a mechanism that produces search trees that have many of the properties of human
search trees as found in the protocols of DeGroot. An idea is generated and processed by a search
mechanism in the presence of other ideas. Each idea is refined, re-evaluated and compared to other
ideas, and the search mechanism does it all. The importance of comparison comes up again and again
in human intelligence. It is fundamental to our stopping rule which dictates termination when it is unlikely
that a better alternative exists than the present one. Comparison also allows expanding the node in the
tree that is most likely to produce evidence to help with the stopping decision.

Both in machines and humans there are questions about how ideas are generated. Ideas are certainly
related to the semantics of the situation at hand. In our system, ideas are produced by shallow search
probes. It appears clear that humans probably rarely rely on this, but rather on already learned structure
that they feel is applicable. In practice, this may turn out to be a question of what the species-specific
hardware best supports.



2 The History of Selective Adversary Searching
When one examines the search tree of a contemporary brute-force search, one is impressed with the

sheer magnitude of the thing. There can be millions of nodes, more than 99% of which rppresent

positions that no good chess player would ever dream of examining. How is one to get a search that

makes more sense?

Those that use the alpha-beta search to guide their chess programs are well aware of the fact that so

much of the search is devoted to irrelevant positions; however, the efficiency of alpha-beta is undeniable.

In an effort to get more out of additional computing time as it becomes available, several schemes have

been proposed which build on the basic alpha-beta search. Such schemes go collectively by the name of

selective alpha-beta search [2]. They use certain mechanisms to direct the power of the alpha-beta

search into what is hoped to be important subtrees.

One popular scheme is to go to some finite depth (say 5 or 6), and then expand selectively to
some further depth, only those moves that are deemed "worthy" of further attention. This
scheme has some merits, but fails in situations where a leaf position is in transition (as when
there has been a sacrifice that has not yet been recouped). Such positions will not get
further attention. The quiescence search of leaf nodes is by definition unable to qualify any
moves for further searching except typically captures and escapes from check. Thus, if a
sacrifice needs to be followed up by a non-capture, such moves will not be included in the
quiescence search, nor will they be examined separately because the leaf node is deemed
unworthy.

* Another scheme is forward pruning which discards moves which do not meet some static
evaluation level. It can be applied throughout the tree or only after some basic depth has
already been searched full width. The forward prune method has been shown to fail
frequently in situations where good defense is required because it is difficult to specify the
characteristics of useful defensive moves.

" Other more ambitious selective alpha-beta schemes are described in [1, 7]. However, all
these schemes are deficient in that they look for certain kinds of moves on which to continue
the analysis, and the definitions used by the search paradigm are not broad enough to
include all useful moves. For instance, no static analysis can detect all threats of mate in 3
moves. The singular extension scheme [1] which seemed so promising for such purposes,
has now been subjected to extensive testing that indicates that a program using the same
resources but without singular extensions will do better than one that uses the algorithm.

"* The most popular scheme at the moment is called "partial depths". In this scheme, moves
that are "active" may not be counted as a full ply. For instance, a check may be counted at
.5 ply and a capture of the queen may be counted as .7 ply. Yet the search is carried on until
this ply count equals or exceeds the specified depth of the search. This tends to elongate
those branches of the tree that have interesting moves in them.

2.1 The Necessary Conditions for a Truly Selective Search
There are two basic precepts that a truly selective search must obey.

1. It must be able to stop when a clearly best alternative exists at the root. This is done by
comparison and is independent of the ultimate value of the best move.

2. It must be able to focus the search on the place where the greatest information can be
gained toward terminating the search.

We deal with the stopping issue first. Most brute-force searches have built into them the ability to move

immediately when there is only one legal move. However, when there are two legal moves, and one
leads to an immediate catastrophe, they are unable to discern this and continue searching as if there
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Figure 1: White to Play

Figure 2: White to Play

existed more than one realistic alternative1 . Many past selective or best-first searches have also been

unable to halt even in the face of overwhelming evidence that there is only one good alternative.

To illustrate the issue, consider Figure 1. An algorithm must convince itself that capturing the queen

with the pawn is the only sensible move (all other moves lose). This is a search of 1 node in our current

program. It does not matter whether the resulting position is a win for white or a draw. The only thing that

matters is that any other move except the capture, c:b3, loses. This is an essential idea, much like the

famous alpha-beta idea (221 which showed that it was only necessary to refute an inferior move once.

The reason that the B* algorithm handles such situations properly is that it uses upper and lower
bounds to bound the likely near-term value of a node. It computes an Optimistic view and a Realistic view

of the move. The search is terminated when the realistic view of one alternative is at least as good as the
optimistic view of the others. In Figure 1, it takes one node expansion to find that the move c:b3 has a

'In alpha-beta Hitech, we implemented a scheme in which when all alternatives except one lead to being mated, that alternative
was played without further search. However, when the catastrophic alternatives are very poor but don't lead to mate, this is not
powerful enough to terminate the search, because the brute-torce search continues to hope for miracles.
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realistic value of +1 pawn, while the optimistic values of all the other moves would be at best +1 pawn

(assuming the queen did not move away). Since the realistic values of these other alternatives are poor
(the queen does move away), it is easy to determine algorithmically that c:b3 is best, and do it very

quickly.

For issue 2 above, the situation is much more complicated. In Figure 2 white must calculate whether

the check Qb3, which forces the exchange of queens leads to a win (it does). If it does not, then white
would be foolish to give away his existing chances for a win by such a move. However, once the first

move is played, the follow-on is automatic. We know of no other actual or proposed searr.h parad:igm

except B* that understands this.

2.2 The Difficulties with Past Approaches

Before the B* search formulation, several other selective searches were proposed. Kozdrowicki [191
developed a method for expanding only the best leaf node in the tree and its children. However, his
algorithm has considerable difficulties in stopping and frequently continued examining the best alternative
when it should have been turning its attention to disposing of the others. In Harris' method [16] the value

of each node was bounded by uncertainty, and the search focussed on reducing that uncertainty.
However, the uncertainty bounding a node began as a constant, and thus could not distinguish a
"promising" move from others. Because the search got such a bad start, it spent much of its time on
meaningless effort. His program also competed in computer chess tournaments, but ultimately

succumbed to the rising alpha-beta programs. Both these formulations failed to consider the importance

of competition between the likely-best alternative and tne second-best as the driving force in deciding

when to stop and where to put the effort directed at being able to stop.

In 1972, the first author discovered the idea that a node need not have a singular value, but could have
value bounds. Up to that time, bounds had been used to precisely delimit the range of meaningful values
that further searches could return; e. g. Alpha-Beta or Branch and Bound. These bounds reflected what

had been learned in the previously executed part of the search. However, bounds had never been used

to delimit the value of a single node independent of search 2 . By having a meaningful but heuristic upper
and lower bound on the value of a node, it becomes possible to decide that the best node is better than

its closest competitor.

This idea resulted in the B* search formulation [5], and the ability to implement a meaningful stopping
rule. We call this stopping rule separation. In practice, separation seldom occurs, so we define

separation as Prb (separation > x), for some real valued x. The original B* idea was to try to increase
the lower bound of the best node (the PROVEBEST strategy) or reduce the upper bounds of competing

alternatives (the DISPROVEREST strategy) until separation was obtained.

There were a number of problems with the original B* formulation. The decision rules about where to
continue the search were not optimal, and this was corrected by Palay in [231. We and others attempted

to use this algorithm on a variety of games, but without great success. One problem was that tne bounds

were estimated using a potentially errorful static evaluation function. For instance, for chess it is

2The fact that in the present implementation we use searches to produce bounds has nothing to do with what has happened in

other parts of the tree.
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important to have the notion of threat incorporated in the optimistic view. However, it is difficult to devise

an algorithm to statically detect certain threats (such as the threat of mate in 2 moves) which are much

more easily found by search. Errors of estimation produce wasted effort in analysis with the possibility

that important moves are never examined.

A [0, 99] B [0, 99]

[0, 99] [0, 99] [0, 99) [0, 991 [-20, 40] [-40, 153

Figure 3: Bounds are not Sufficient to Portray Goodness

There was also another issue discussed by Palay. Backing up bounds to measure the potential of a

subtree fails to take into account that the distribution of likely values within the backed-up range need not

be uniform. This is because the bounds of the parent are the maximum bounds of the children. If many
nodes in the subtree have values near one bound, this makes it more likely that the realistic value of that

subtree is nearer that bound. Figure 3 shows the problem. Here both nodes A and B have the same

backed up bounds. However, node A is clearly to be preferred since the maximizing player can choose
among three good alternatives. Then in case some of them fail to live up to expectations, the others may

succeed. The subtree of node B does not allow this; everything is staked on the success of the left most

node 3 . The examination of this problem showed that it was essential to use distributions to measure the
potential in a subtree. The distributions backed up for A and B will be quite different, while the ranges are

the same.

2.3 The Springboard for the Present Work
These new insights resulted in a thesis by Palay [24] which decidedly improved the performance of the

B* style of searching. Unfortunately, this important contribution still remains largely unrecognized at this

time.

Palay did several things:

"* Use shallow searches to produce quite accurate bounding values.

e Use an extra move for the Player at the start of a search to get optimistic values.

"• Introduce the notion of a Realistic value as part of the structure of a node, and partition the
range of a node into two segments:

- The range between the Optimistic value and the Realistic value is the domain of the

"aThls notiou has been variously tapped in the history of searching. Slagle [28] postulated the M & N search, and the idea was

also central to singular extensions [I].

5



Player (the one whose turn it is to move at the root), and he tries to move the Realistic
value upward toward the Optimistic value.

The range between the Pessimistic value and the Realistic value is the domain of the
Opponent, and he tries to move the Realistic value downward toward the Pessimistic
value.

Use a probability distribution instead of a range as the value of a node, and produce a
calculus for backing up distributions. A probability distribution carries more information than
a range. It expresses where the action is within a given range. This is invaluable for making
good decisions.

Palay did experiments with a fundamental text of chess tactics [26] that was being used by all the

programs of the day to test their prowess. He did his experiments on a VAX-780 When time was scaled

according to the difference in power between this and the chess machine Belle [121, it was a close

competitor to Belle (the best chess computer at the time) on the problem set. It solved simple problems

considerably faster, but failed to solve some deep problems. At the time, it was not clear what the latter

problem was due to. We also had the program do some problems that were more positional in nature,

and it did well on these. B* with probabilities seemed destined for a bright future.

We built the chess machine Hitech [141 to serve as the B* searcher. However, Hitech was so good

when it first came up doing straight alpha-beta search, that this lofty motivation faded quickly, and Palay

took another job outside the Computer Science Department at CMU. In retrospect, it was foolish not to

pursue both approaches in parallel.

Palay's work left things in the following state:

"* Probability-based representations are better than a simple range.

"* Values computed by shallow searches are considerably better than statically computed
judgements.

"* Realistic values can be obtained by doing shallow searches on the node in question.

"• In order for optimism to work, it is necessary to have a rank ordering of moves in order
of likelihood of success and impact if successful. Optimistic values were obtained by
allowing the side-on-move an extra move to start. This implemented the time-tested
notion of threat, as that which would happen if your opponent did not respond.
However:

"* It is impossible to estimate the value of a check by giving the checking side an
extra move, as he would merely capture the king.

"* A mate threat is also difficult to deal with. Clearly, mate threats are very potent,
but where do they fit in with various captures, checks, pawn promotions, etc.

"* Palay's approach involved a SELECT phase during which the Player exercised his optimism
to find the best move at the root. Then a VERIFY phase allowed the Opponent to exercise
his optimism on the selected move. If the selected move remained best after the VERIFY, it
became the move made. Otherwise, the SELECT phase was begun anew. This mechanism
worked well; however, there were still many issues to be resolved:

"* How is separation to be achieved in the usual case where there are several closely
compe•ive alternatives?

"* What is the best way to efficiently represent and back up probabilistic data?

"* How to use the probability distributions to decide which move to process next
considering such things as:

* How does one deal effectively with distributions that overlap?

6



a How can one prevent one preferred alternative from getting all the attention?

How to make a complete program of all this; one that not only solves tactical4

problems but plays a whole game, including managing its time resources, thinking
ahead on its opponent's time, saving pertinent search trees from one move to the next,
and other things.

In 1991, as Hitech5 was being surpassed by other chess programs, and the various people who had
worked on it had graduated or gone elsewhere, the senior author determined to make one last attempt at
making the B* concept work. There had been some papers [27, 21] on new approaches to this problem,
but none had been linked to a successful program. It was desired to see where the weaknesses in the B*
approach were, and how they could be remedied.

3 The New B* Search

3.1 Some Considerations
The initial goal of the research was to see if it was possible to integrate McAllester's Conspiracy

Theory [211 into B*. The idea behind conspiracy theory is that there are a certain number or leaf nodes
that conspire to keep the value of some descendant of the root from changing by a certain amount in a
certain direction. If it were desirable to make such a change, then the easiest change to effect would be
the one where the fewest nodes conspire to keep this from happening. The senior author quickly found
out that this would not work, and found out something very important about why the conspiracy approach
has not worked. In practice it is fine to talk about conspiracy numbers of magnitude N; however, in game
playing, N's > 2 just do not matter. There are too many places where just breaking conspiracies of 1 or 2
is conceivable, so that one seldom gets to conspiracies > 2. This is the reason for the failure of the
conspiracy approach in game playing. There is no good method for deciding the most promising
conspiracy of the various magnitude 1 & 2 conspiracies 6.

What was needed was a more real-valued approach; Palay's probability-based B*. Here moves can be
ranked in order of likelihood to succeed; rather than being lumped into a few conspiracy buckets. This
leads to much better discrimination. We therefore concentrated on improving probability based B* and
refining its details.

4A tactical problem is one in which the correctness of a move is decided solely based upon the material balance at the end of the
principal variation.

sin this paper, we shall be referring to the established Hitech program variously as Hitech 5.6, alpha-beta Hitech, brute-force
Hitech and tournament Hitech. These are all attributes of this program, that may be germane to the context in which it is being
referred to.

61n passing it Is worth noting that this is very similar to the problem that keeps the A* search from being effective. What happens
is that long lists of similar valued nodes are accumulated waiting to be expanded, and it is impossible to discriminate which has the
greatest promise.
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3.2 Representation of a Node
A node in the B* search is a complex data structure. The principal elements are:

"* The RealVal, which is the best estimate of the true value of the node,7

"* The OptVal which is the optimistic value of the node for the side-on-move,

"* The PessVal which is the optimistic value for the side-not-on-move, backed up from its
subtree8, and

"• The OptPrb which is the probability that a certain target value can be achieved by future
searches of the subtree rooted at this node.

3.3 Overview of the Probability Based B* Search
Before launching into a full description of the algorithm, we present a stylized version in which we do

not attempt to define constructs but just give a feel of how it operates.

integer TargetValue, NewTarget;

SEL"CT: while (RealVal (DentMoveAtRoot) < OptVal (AnyOtherMoveAtRoot))
{
Set TargetValue; !I Using OptVals and RealVale
Select Root Node with greatest OptPrb; It Prb(RealVal > TargotValue)
Trace down the child subtree selecting

For Player-to-Move nodes, child with largest OptPrb
For Opponent-to-Move nodes, child with best Opponent RealVal

Until arriving at a loaf node;
Get RealVal for each Child Node of this leaf;
If it is a Player-to-Move node get OptVale for each Child;
Back up Values;
if (HffortLimiteNotzceeded) GoTo SELECT;

NewTarget w RealVal (2ndBstMoveAtRoot);
VERIFY: while (RealVal(BestMoveAtRoot) >- NewTarget)

Select Reply Mode with greatest OptPrb; 11 Prb(RealVal > NewTarget)
Trace down the child eubtree selecting

For Opponent-to-Move nodes, child with largest OptPrb
For Player-to-Move nodes, child with largest RealVal

Until arriving at a loaf node;
Get RealVal for each Child Node of this leaf;
Back up Values;
if (HffortLimitsexceeded) GoTo MakeMove; 11 It passed inspection.
GOTO VERIFY;

QoTo S8LCT; II Selected move was refuted.
MakeMov*a

71n a game-theoretic sense a node can only have three values: Win, Lose, or Draw. However, Win/Lose/Draw values are unlikely
to found by the search. Therefore, it is necessary to have a scale of values that permit ordering leaves of the search according to
goodnees. Palsy in (241 discusses the Oracular value of a node. This is the relatively stable value that a node would have on the
existing valuaton scale based upon a deep search of (say) 10 ply.

81t should be noted here that all the 'Vals are the result of alpha-beta searches, so they represent what can be achieved against
best rsistmance. Thus, it Is important to recognize that the OptVal is only that which can be achieved against best resistance.
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3.3.1 OptPrb and Probability Distributions
Probability distributions collect the information needed to make good decisions about what to explore

and when to stop. When a node is expanded, its RealVal is computed. The conditions for computing the
OptVal are explained later in Section 3.5. It is assumed that the actual value of a leaf is somewhere
between these two values, with it most likely being nearer the RealVal. As this information is backed up,
a probability density distribution is formed for every node that is not a leaf.

1.0 1.0

0.6 0.6
Prob Prob0.4 

0.4

0.2 0.2

0.0 0.0

A 20 Value 250 B 20 Value 250

Figure 4: Probability Distribution and Meaning

Figure 4 shows two example distributions. The cumulative distribution for a typical leaf node is shown
in A. The RealVal is 20 and the OptVal is 250. We assume a uniform distribution of values at leaf nodes.
The OptPrb at 250 is 0, while the OptPrb at 20 is 1.0 since that value has already been achieved.
Intermediate values can be read off along the X and Y axes. For non-leaf nodes the distribution of values
will very likely not be uniform, and this is what gives strength to this approach. Such distributions portray
what the backed-up information shows about the promise of the subtree. This can be seen in 8, which
shows a possible distribution after having backed up the values in its subtree9. This method overcomes
the difficulties mentioned in Section 2.2, and allows discriminating in which subtree there is the greatest
likelihood of, for instance, achieving a value > 150. Being able to ascertain such information is vital to
making good node expansion decisions.

3.4 Independence of Alternatives in the Search
When a player has many alternatives it is more likely that he has a good one than if he only has few.

This is reflected in the way distributions are backed up. When the Player chooses, we assume that he
will choose his best alternative. However, when the Opponent chooses he may choose from many, and
the quality and quantity of his alternatives are reflected by the product method of backing up
distributions' 0 .

It is well known that all moves and branches of a search tree are not independent. Thus, a certain
move may appear non-forcing because it allows (say) five replies. However, if each of these replies is
refuted in the same way, then one may question whether this represents as much freedom as when each

of the five replies is met in different ways. Actually, the problem of independence of alternatives is

rhemethod of backing up distributions is explained in (24,251. It involves backing up the best distribution at OR nodes, and
backing up ft product of all distributions at AND nodes.

'Olt should be noted t#at this captures th idea behind conspiracy without being subject to the categorization effect that comes
from putting things Into conspiracy buckets.
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complicated by the fact that no one knows how to define "in the same way*, despite the fact that it is fairly

clear to humans what is being talked about. In some earlier work [41, the first author backed up

descriptions of failures, and used these to try to discover those moves that could not be refuted in the

same way. It turned out that the descriptions were not complete enough to be effective all of the time.

We have addressed this problem in the modem style by approximating behavior by starting at the
bottom with the simplest concepts. Thus, as a first approximation, it is good to categorize moves into
Reply Groups. All moves in a reply group have the same best response. These responses are

discovered during the RealVal searches. The value backed up for a reply group is the best value found in
searches of all members of the reply group. This avoids the risk of having the OptPrb of a parent node
reflect that there are many responses that may or may not be independent. This method has produced

better behavior, but we do not want to justify it by other than empirical means.

3.5 The Search Mechanism
The participants in the adversary search are the Player who is the side to move at the root, and the

Opponent, who is the other side. In the original formulation of B', the search was guided by selecting
either the ProveBest or DisproveRest strategy (51 in an attempt to gain separation. In Palay's formulation

these strategies were replaced by two phases. In the SELECT phase, the search proceeds until a

candidate best descendant of the root is determined. Here, the Player's optimism is extremely important

in trying to find the best move. In the VERIFY phase this move is subjected to intense scrutiny to
determine if it can hold its value. Here the opponent has the chance to exercise his optimism. For
instance, in the SELECT phase a certain piece may be attacked by the Player, and prudence dictates that
the Opponent should move or defend it. However, in the VERIFY phase it may be found that a counter-

attack best solves this problem. It should not be the case that both sides exercise their optimism

simultaneously, as then total chaos would result. If the Player were to put a rook where it could be taken,
it behooves the Opponent, as a first attempt, to take it. If he were allowed to exercise optimism at this
point, he might prefer to attack the queen, which if successful could be better. However, it would widen

the scope of the investigation unnecessarily to the point where convergence would be problematical. This

problem was first discussed in (4].

3.6 Node Expansion

Expanding a node consists of doing probe searches to get bounding values for its children. The
algorithm always gets the RealVal bound for any node being expanded by doing a D-ply search of the
move in question. Here D is referred to as the probe depth, and is adjustable depending upon the power
of the machine and the amount of material on the board. If it is the SELECT phase, then the children of

all Player-to-move nodes also get an OptVal. OptVals are obtained by making the move leading to the
child node, and reversing the side-to-move at the start of the D-ply search. This gives the Player an extra
move, and gives him a chance to show his threats. The reasons for this method are discussed in Section
3.7. Since the SELECT phase only deals with Player optimism, it is not necessary to get OptVals for the

children of Opponent-to-move nodes. On the other hand, in the VERIFY phase, OptVals are obtained
only for the children of Opponent-to-move nodes, because here we are dealing with Opponent
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optimism.
1 1

3.6.1 The SELECT Phase
In this phase, we only deal with the Player's optimism. OptPrb's define the Player's potential at each

node. All phases are governed by effort limits, which are discussed in Section 3.8.

The search begins with a limit on the number of nodes that are to be expanded in trying to find the best
move for the Player. When this limit is reached, we begin the VERIFY phase. If during the SELECT
phase, the best move is considered "clearly best", the SELECT phase is terminated early. By clearly

best, we mean that competitive OptPrb's are valued in such a way that it is unlikely that any other move
can achieve as good a RealVal. If the search later returns to the SELECT phase because the selected
move was refuted during the VERIFY phase, then a new effort limit is set, and things proceed as
described above.

3.6.2 The VERIFY Phase
Despite Palay's assertion that the VERIFY phase is the reverse of the SELECT phase, this is not

correct. The purpose of the VERIFY phase is not to find the best reply for the Opponent, but merely to
find one that is good enough to reduce the RealVal of the selected move to the point where it is no longer
best. These two goals are not the same. Finding the best move in the SELECT phase is an open-ended
activity terminated only by exceeding the effort limit or finding a clearly best move. Finding any move that
is an adequat- refutation of the selected move is a much more circumscribed task.

In the VERIFY phase, the Opponent is allowed to exercise his optimism, which has been suppressed
during the SELECT phase. For instance, assume the successful Player move in the SELECT phase was
to sacrifice a rook which the Opponent captured. In the VERIFY phase the Opponent will be allowed to
try his optimism. He could threaten mate, and this may refute the rook sacrifice. However, it would have
been folly to allow this threat during the SELECT phase. Only after a concrete selection has been made
does it make sense to allow the opponent to try to refute by non-standard means.

The length of the VERIFY phase is also governed by an effort limit. If the selected move is refuted
before that limit is reached, control returns to the SELECT phase to begin anew finding the best Player
move. If the effort limit is reached, the selected move has stood up to testing, and is played. It is also
possible for the VERIFY phase to give up trying to refute the selected move, if none of the moves
remaining to be investigated appear to have the potential for a refutation.

3.6.3 Selecting the Next Node to Expand
At the root, the node with the largest OptVal is not always the best one to look at. It may be that such

an OptVal represents a subtree where Prb(500) = .01, and Prb(1 00) = .02. However, it might be better to
pursue a subtree where Prb(1 00) = .8, even though Prb(300) = 0.0. So a more likely lower goal may be
preferred to a less likely higher goal. This is why distributions are so desirable as estimators of goodness,

"ilt should be noted here, that when we discuss node expansion, we are speaking of B* nodes. Each B* node expansion
Invols doing a certaln number of probe searches depending upon how many descendants the node has, and what phase the
search Is in. This in turn will Involve many thousands of nodes in the probe (hardware) searches. We do present the latter data at
vadous ple in Ots report, but for the purposes of understanding the B* algodthm, it does not matter how many descendants a
node has, nor how many nodes were expanded In the search to find the bounding values.
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and OptPrb for a suitable goal gives an excellent idea of which branches may lead there.

In each phase, one player is goal-oriented and the other is an obstructor. The goal-oriented player
(GOP) tries the move that has the greatest chance of achieving some optimistic level of success, and the
obstructor tries to limit the effectiveness of that move. Limiting the effectiveness of a move is a much
more prudent strategy for the obstructor than looking for wild refutations. The GOP and the Obstructor
form a pair, and they succeed in limiting the scope of the investigation to the benefit of the problem
solving process. In the two phases, the two opponents exchange roles. Thus, in the SELECT phase the
Player is the GOP, and in the VERIFY phase the Opponent is the GOP. This exchanging of roles
continues until the optimism of the GOP does not change the existing view of what is going on.

The level of success that the GOP attempts to achieve is called TargetVal. At levels in the search
where the GOP is on move, the branch chosen is the one whose OptPrb indicates that it is most likely to
reach TargetVal. At levels where the obstructor is to choose, the branch chosen is the one that has the
best RealVal from the obstructor's point of view. This produces the firmest resistance.

The expression that computes TargetVal is (OptVal(2ndBest) + RealVal(Best))/2. We have no theory
for this expression, but it seems to do an excellent job of keeping the goal at the right distance from what
has been achieved already. As these values change, TargetVal will also change. The major function of
TargetVal is to avoid computing the cumulative probability distributions that caused Palay's program to
spend so much time. Each time TargetVal changes, the program goes through the whole tree (which is
never more than 20,000 nodes, and seldom more than 8000) and computes the probability of any node's
subtree having the potential to reach the TargetVal. These values are backed up by the product rule
methods explained in Section 3.3.1, and this yields the OptPrb's for each node. This computation takes
about 0.2 seconds on a SUN-4 workstation. As new information comes in during the search, the OptPrb's
are updated along with the OptVal and RealVal in the affected subtrees.

This method should be compared to Palay's process which produced a rough estimate of the whole
probability distribution associated with each node. That allows reading off the probability of achieving any
given level of success in that subtree. However, the processing cost is large. Instead, we estimate a
target distance, and then compute the area under the curve from the RealVal to that TargetVal. This
computation is considerably faster, since it does not require producing a distribution capable of being
interrogated on a point-by-point basis. If it should turn out that the selected TargetVal is too difficult to
achieve, it is moved closer and the process repeated, at still a fraction of the cost of Palay's scheme.

In Palay's method it is possible to choose the node that has the greatest likelihood of achieving the
greatest success. The first author had many opportunities !o observe this algorithm in action, and does
not believe that it in any way outperformed the present scheme. It turns out that within limits it only
makes a small difference which of several promising nodes are chosen. They will all be examined
eventually, and it is sufficient to examine them in some approximately correct order. If one of them turns
out to be a winner, it will eventually be found. If there are several winners, the first one found will be
selected. The quality of the data, while truly excellent for the given purposes, does not deserve the kind
of high quality mathematical manipulation that Palay's scheme involved. It is, in fact, necessary to
introduce some variation into the selection process to guarantee a reasonably broad, if shallow, coverage
of all candidates. This is treated under the subject of dithering (see Section 6). Any somewhat second-
rate decision will actually support this process.

12



During the SELECT phase, TargetVal is always greater than the best RealVal, and as gains in RealVal
are made during the search, TargetVal is adjusted accordingly However, during the VERIFY phase
TargetVal always remains at the value that the RealVal of the selected move must be reduced to for it no
longer to be best. In both phases, we have found that it is not the best policy to always investigate the
node with the highest OptPrb. It could be that such a subtree has already had a large amount of effort
expended on it. In such a case, it is wise to select for investigation a node that is not quite as good, but
has had less effort expended on it.

3.6.4 The Two Phases Working Toge.her
It is the function of the SELECT phase to identify the best move for the Player, and the function of the

VERIFY phase to show that this move is not best. This sets the tone for everything else. At all times the
move with the greatest RealVai is considered to be the best move. Tt . GOP will at each choice point
select for search the node with the best OptPrb with the proviso that the dithering factor may cause
occasional effort to be diverted to a node with a less good OptPrb. The latter is useful to assure that the
most promising node does not get all the search effort. In the SELECT phase it is important to examine
every possible move that has potential, and to pursue those with the greatest potential until they are:

"* shown to be decisively better than the competition,

"- found to be lacking, or

"* time expires.

In the VERIFY phase the same logic is applied in attempting to find that the selected move is not best.
In the SELECT phase all effort is put into being sure that every possible promising move is tried. In the
early stages of a search when optimism abounds, this means that the TargetVal is a good distance from
the best RealVal. As the optimism abates, the TargetVal comes closer to the best RealVal. However, in
the VERIFY phase, TargetVal is a firm value. If the value of the selected move can be brought down
below this value, then the selected move is considered refuted, and control returns to the SELECT phase.

3.7 Knowledge Issues in Optimistic Evaluation
There are certain problems associated with assigning OptVals to moves that are checks, that threaten

mate, or that start with certain kinds of captures. These are domain specific issues for chess, that Palay
did not succeed in solving.

All values are the result of probe searches, which produce more consistent values than static

estimates [241. Optimism is best portrayed by allowing the GOP to make an extra move before beginning
the probe search that produces the OptVal for this move. In chess, this amounts to discovering if the
GOP has a "threat that he could execute on the next move. However, there are many cases where the
extra move gives a false impression of what is going on.

The most obvious one of these is a checking move. Clearly, one cannot make an extra move here, as
this would result in the capture of the king that is in check, which would not tell us anything useful.
Instead, we have determined that the strength of a check is a function of the following positive properties:

1. Whether the checking piece is safe from capture?

2. How few replies to the check there are?

3. Whether the king is forced to move?
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Thus, we produce a value based on these considerations. We discount the value of a check, so that
checks near the root of the tree tend to be preferred.

Another problem is the threat of mates. A normal 3-ply Hitech alpha-beta search with extensions is
capable of always finding mates in 2 moves, and frequently mates in 3 or even 4 moves (because of
extensions). Such threats are very potent, and are something that is essentially impossible to discover
without probe searches. We consider mate threats to be better than all checks that have 3 or more
replies. The number of moves to mate is not important. We also discount such threats as a function of
distance from the root.

A third type of problem, we call hit-and-run captures. Here a piece will capture a man that is well
guarded, and then use the extra move to escape with the capturing man, thus giving the illusion that there
is a threat to capture whatever was grabbed in the hit-and-run. We have solved this problem by careful
case analysis of the principal variations brought back by the optimistic and realistic searches. If:

1. In the optimistic line of play the piece making the extra move is the same as the one that
does the capturing, and

2. In the realistic line of play, the capturing man is itself captured,
then only a small fraction of credit is allowed. Similar considerations deal with moves in which a piece
moves twice, but would have been captured in the line of play that produced the RealVal. Such "threats"
are not to be taken too seriously.

We have been able to use the pattern recognizing ability of Hitech [61 to create patterns that produce
optimism in special situations. If a king has wandered away from his home base, it is worth endowing
such positions with a few points of optimism for the opponent to encourage further exploration. Another
situation occurs when there is a pin (which standard Hitech does not detect). Here again, we encourage
the side that is making the pin to consider the position optimistic for itself.

We have only developed a few optimistic patterns, but they are producing excellent results. It should
be pointed out that brute-force programs have had problems with the issue of optimism since time
immemorial. Consider, for instance, the value of a pin. It could be that the pinned piece will be lost
completely, or that it will escape, or that part of its value will be lost. The quiescence search will do a
fairly good job of arbitrating this. However, there are times when (say) a knight is pinned by a bishop, yet
the knight is defended and cannot be captured immediately with gain. However, in the long run the knight
cannot escape and some severe detriment will result from this. Of course, not every knight pinned by a
bishop will suffer such a fate. It is impossible to decide statically how much of a debit to associate with
such a situation; today programs tend to use some heuristic average. This will encourage pinning and
avoiding being pinned, but fails to address the main question. A pin is a source of optimism for the side
doing the pinning. Only by pursuing this issue for some distance in the search, can the truth about the
value of the pin be discovered. This is an example of a fundamental class of issues. There are very few
things in the real world for which an exact value can be determined. Some sort of fuzziness represented
by optimistic and realistic evaluation bounds is a good way of bounding the problem until more
investigative effort can be brought to bear.
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3.8 Effort Umits
It is rarely the case that one move is clearly superior to the rest, and in such situations the algorithm

speedily determines this. However, in most cases there must be some assurance that the algorithm is
taking appropriate action under conditions of uncertainty. For instance, how much effort should be spent
in the first SELECT phase to decide the best move. Assuming that the search does not terminate due to
an overwhelming preference for a move, there are three types of effort limits:

e The amount of time available for the investigation,

* How close in goodness are the competing alternatives, and

a That no effort be expended on any branch that has less than a likelihood, X, of achieving the
TargetVal. As the search time increases, X is reduced accordingly.

Similar limits control the effort to be allocated to refuting the selected move in the VERIFY phase. It
could be that the very next move to be investigated would refute the selected move. However, in a
pragmatic world there must be a balance between the likelihood of success and its cost. Each phase
terminates when further investigation costs more than it is likely to help.

We set the effort limit at the start of the wl-oie move selection process based upon the size of the
saved tree (discussed in the next section), and the average amount of time that is available per move until
the next time control. This is expressed as the "maximumm number of nodes that the algorithm expects to
expand. In this implementation, that number is 225. 40% of the nodes are allotted to the first SELECT
phase, and 50 nodes to the first VERIFY. After that, future selects and verifies, use approximately 50% of
the remaining nodes with the proviso that there never be less than 15 nodes allotted to a VERIFY. This
can on occasion result in exceeding the maximum node target. However, those occasions are rare, and
are more than made up for by the large number of times the algorithm terminate;3 without using up its
node allotment.

3.9 Thinking Ahead on the Opponent's Time
Brute-force programs think ahead on the opponent's time by guessing the move they expect to be

made, and then figuring out what they would do if that move were played. If the program guesses
successfully, it may be able to respond instantaneously to the expected move. If the time taken by the
opponent is inordinately long, it may even be able to penetrate more deeply in the search, and make a
much better move than it would under normal time controls. Tournament Hitech improved upon this
technique by putting a maximum time on thinking ahead for any move the opponent may make [7]. When
that time was reached, it would think ahead on the next most likely opponent move, etc. There were
occasions where it was prepared for any of 6 potential replies, and would respond instantly if any of these
were played. In brute-force programs, saving parts of trees from the previous move has been thought to
be impractical. The maximum savings would only represent about 5%12 of the total work that is going to
be expended on the next move, and there are a number of issues relating to what to save.

The situation with B* think-ahead is quite different. At the time a move is actually played, the search
tree represents a fabric of moves that justifies the selection of the played move. Although the program
considers the move to be best, it does not know the best reply. All it knows is that there is no reply which

12lt #alk9 a factor of 4.5 to do an additional ply of search. To replace the part of the tree lost by the move made and the
oppanets reply 1S 1 - ( 114 .5 )2 = 0.95
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can make a difference with respect to the choice that it made. After having made its move, it behooves

the program to identify the best reply and the best answer to it.

Given this understanding, the correct method for think-ahead becomes easy to understand. The

germane parts of the tree are saved when the B* search makes its move. Then the Opponent's best

move is found using the procedure used for Player move selection. If the Opponent moves before this

procedure terminates, t'len the analysis tree will have been enriched with new pertinent data. If the best

Opponent move is found before he plays, the search will turn its attention to finding the Player's best

reply. This can continue as time allows. We have observed occasions where B* Hitech has calculated

certain parts of a tree 6 moves in advance, and is prepared to reply immediately as long as the game

continues along the line of perceived best moves. If at any time, the analysis indicates that a move that
was previously thought best is no longer so, the analysis will return to that stage and resume from that

point.

In selective searches, where only small numbers of nodes are searched, it is feasible to save and

enrich trees. In the brute-force paradigm everything is hit-or-miss. If the right move is guessed some

effort is saved; if not, the think-ahead effort is all wasted. It is worth noting that even when B' Hitech is

not quite sure which of three or so plausible moves is best, it is enriching the tree with its findings. A fairly

high percentage of these are useful after an actual move has been made.

3.10 The Graph History Interaction Problem
The analysis of a two-player game can best be represented in the form of a tree. However, in games

like chess where the same position can be reached along many different paths, it is more efficient to use

a graph. Using a graph allows each position to be evaluated to a given depth only once [291. The benefits

go beyond the obvious one of oreventing duplication of effort since different length paths can lead to the
same position. For example, if we are normally searching to a depth of 7, and at depth 5 encounter a

node that has a value brought back from a 5 ply search, it is as if we were searching to a depth of 10.

This is a very important gain that really makes itself felt in the end game, frequently allowing the analysis

to go to more than twice the expected maximum depth.

A

B o:" "":e C
,D

B

Figure 5: History can Affect the Value of a Node

Unfortunately graphs have one fundamental flaw in games like chess where a path that loops back on

itself is scored as a draw. Figure 5 shows the problem. Each node in the figure represents a position and

each arc some sequence of moves. The path ABDB is a draw by repetition. However, the path ACDB
does not repeat. How should position B be scored? As a draw or as the result of searching B? It clearly

depends on the path that is taken, yet ignoring the path to a position is the source of the efficiency of

graphsl This is the Graph History Interaction (GHI) problem; so christened by Andy Palay [24]. It is an

16



insidious effect of using a graph to represent the analysis.

In a brute-force program, an analysis involves millions of positions. For this reason, graphs are
typically represented as a hash table without overflow. Each entry in the hash table stores the essential
information about a search done on a particular position. If two different positions hash to the same entry,
the entry is changed to keep the more valuable information [71. If a position that is flushed from the hash
table is encountered again, it will have to be searched again. The benefits of compactly and efficiently
storing a large part of the graph more than make up for the cost of collisions since most searches are not
very valuable and the cost of searching an individual position again if needed is low.1 3 Given this
representation, how can the GHI problem be dealt with? There is no optimal solution, but how collisions
are handled can help [11]. It has been found empirically that the likelihood of some deleterious effect due
to GHI in the brute-force paradigm is far outweighed by the benefits described above. This is because
most of the entries in a brute-force search are nonsensical, and the likelihood of some meaningful
collision is small.

The situation is different for the B* selective search, thousands of nodes are generated instead of
millions and information is continuously being passed around in the tree. The search tree must be
preserved in its entirety, or the whole process would not work. For this reason we represent search trees
as an explicit graph with each node in the graph pointing to its parents and children. The GHI problem is
even more severe for a selective search because most entries in the search tree are well reasoned out,
and there may be several paths to meaningful goals. One might question whether a tree representation
would be preferable to a graph representation. There are two good reasons for still preferring a graph:

* Efficiency -- In the usual case, the path to a position does not matter and the work of
exploring the subtree below any given position only needs to be done once. In a tree
representation every time the same position is encountered the whole subtree below the
position needs to be explored again. Given the relatively few nodes that a selective search
can afford to expand, this duplication of effort would be ruinous.

Logical Necessity -- If there were a sequence starting at the root that went A, B, C, and this
leads to the same position as the sequence C, B, A, it would be important to know about it.
Otherwise, the search would be under the impression that there are two equally good
alternatives, A & C, and would have an impossible time deciding between them. This
problem is solved in brute-force alpha-beta searches by just choosing the first of the set of
alternatives with equal value. However, this is not possible when the search termination
criterion is deciding that one move at the root is better than all others.

Hence, graphs and the problems they bring are necessary. This leaves the issue of how to deal with
GHI. In selective searches an error due to GHI could be ruinous. We deal with the problem by using
conditional values (CV). A CV for a node has a value 14 only if a particular combination of nodes are on or
not on the path that leads to that node. CVs are only found in nodes that are on a strongly connected
cycle. Most nodes are not on a cycle and do not need CVs.

The process for computing CVs starts by finding all nodes that are on a particular cycle. The possible
paths through the cycle are then explored by starting from each possible entry point into the cycle and

13The cost of searching is low because the results of searching the children of the flushed position are usually still in the hash
table.

14Actually a set of values Including value bounds and the OptPrb.
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recursively exploring all cycle children. When a path loops, a repetition CV dependent on the looping
node is created. CVs are backed up to each parent node by combining the CVs for all cycle children with

the values from all non-cycle children. This process continues until all possible paths are explored. The

details involved in making this an efficient process will be described in a forthcoming paper.

4 Examples of the B* Search in Action
For the examples in this section, the effort limit is 225 nodes, of which 90 are dedicated to the first

SELECT phase. To read the logs presented, the following information is needed:

There are 10 node expansions listed on each line of the log. The number at the left of each line

followed by a ":" is the number of the first node expansion on that line. The node that is expanded is in

the subtree of the top level move named in algebraic notation. For instance, the first node expanded in
Figure 6 was the root node, and this resulted in the move "b7c6" having the best RealVal, as indicated by
the "*" in front of this move. A letter following the 4 character encoding of the move indicates the depth at
which the probe searches were dispatched. For the third node, the "a" following the "d7c6" indicates the

probe searches were sent out at depth 1 (there is a mapping of the letters of the alphabet to the first 26
integers). When a search is dispatched at depth N, it will, of course, reach to depth N+D, where 0 is the

probe depth, plus any quiescence moves that may be explored below that. When there is no depth letter
following a move, this means that this move became the best as the result of expanding a node in
another move's subtree. When a number appears by itself, this means that this is the new best RealVal
for the whole search, and the "A" or "v" indicates whether this is an upward or downward movement in the
value. Values are measured on a scale where a pawn is worth 128, and positional values of much lesser

magnitude are included. Finally, a "$" indicates that the move following it is the best reply during the

VERIFY phase. In the VERIFY phase, the depth indicator letters are in capitals rather than lower case.

Figure 6: Black to Play

1: *b7c6 30v d7e6a f8t4a d7c6b $e4e5B olgSD $fld3 $e4e5D 32A
11: *4e51 e4*5D 4*5]r e4e5D *4e5D e4e.G

22.34 16 2154338 <- 32 b:c6 1 .5 Qe7 Qe2 dS Nd2 # c5
5. ..... b:sc6 ***[b7c6]***

Figure 6 is an example of a move that every program would make correctly. The only issue is how
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much time would it take to make this move. While there are 25 legal moves, there are really only two that

do not lose material: d:c6 and b:c6. Even though this is the case, and even though b:c6 is vastly superior
to d:c6, it is safe to say that any brute-force program would stop only when its effort limit is reached,

which would usually be 3 minutes. B* Hitech, on the other hand, at regular tournament settings takes

only 5 nodes to discern that b:c6 is clearly best, and then does a minimal VERIFY to see that nothing
unexpected can happen. The result is that the move is made in 22 seconds instead of 180. Less

extreme examples of this behavior abound.

The search penetrated to a maximum depth of "G' (7) + probe depth (3) = 10. At the end of the search

is given the time taken, the number of coftware nodes, the number of hardware nodes, an indication of
the lower bound's on the value of the move, and the projected line of best play. The "#" indicates that the
moves to the right were found by the hardware probe search. Since Black is the player, negative values

are preferred.

Figure 7 is a much more difficult problem. Here B* Hitech examines the correct move, R:h2+, as eady

as its second node expansion, but does not recognize its value until expansion 68, at which point it

discovers the correct follow-up 1.--R:h2+; 2. K:h2,g5! This is despite having gone to depth 9 (6+3) on

expansion 23 without hitting on the right follow-up. In this search the issues are much less clear, and B*
Hitech takes the full 90 expansions allowed for the SELECT phase and the full 50 allowed for the
VERIFY. It should be noted that even though there is only one legal response for white during the

VERIFY phase, this is still explored at times to a depth of 10, sinre it is possible that some later turn of
events will show the idea to be unsound for black.

Again, the principal line of play delivered is !orrect, but obscures what is most important to human
eyes. Namely, if after 1 .--R:h2; 2. K:h2,g5; white were to make a safer-appearing move such as 3. 0d2,
then would follow 3.-- Qh8+; 4. Kg2,Qh3+; 5. Kf3,Bg4 mate. Below the move output, we show the tree

profile for the search, which shows the number of nodes expanded at each depth. It shows that the

maximum depth reached was 11+3(probe search depth) = 14, which is about 5-ply deeper than a normal
alpha-beta search would reach in this amount of time. The profile has the characteristic bell-shaped

outline first noted in [4]. The average depth of the tree is 4.8+(3) = 7.8 which compares well with the 8-ply

search that brute-force Hitech executes in the same amount of time. We assume that usually this effort is
more effectively distributed into the interesting parts of the tree. In the present case the idea is not very

deep (but complex to humans) and brute-force Hitech finds the winning line during the 6-ply search.

There is, of course, much more to the decision process than we have presented above. At each point

where node expansion decisions must be made, the RealVals, OptVals and OptPrbs of the competitor
nodes must be considered. It is impossible to portray all this information in such a short report. To give
some idea of how things change, we present in Figure 8 detail the first 10 nodes from this search.

IsRecall that the B* search only develops the tree to the point where it is sure it has the best move, at which point it only has a
lower bound on the value of that move,
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Figure 7: Black to Play

1: *c~h3 hlh2a h8h2b *4947k h~h2c h~h2c -198v c~g4a qg5g& h8h2c
11: g6g3b g6g5c g~g~d d8d7c dd*S& 48474 g~gS. d4c3a d847e g6g5c
Z1: h8h2d h~h2e h8h2f d~d7c d8d7f d4o5b d4e5c d44e5 d4450 d4e5e
31: d847c d4c3b d4c3c d4c3c d4c3d d4c3e d4c3e d8d7e d8d7f d8d7g
41: 48d7f d847g d847h d847i 4847± d~d7g d147g d4c3d h8h2d h8h2e
31s g6gsc d847g g6g5d d445c g6g5f g6g~g h~h2e g6gsh d4e5c h8h2f
61: d443a d4*5f d4e~g d4e~g 48478 4847. d8d7g *h8b2c d4c3f csg4b
713 cag4c h~h2o d445g d8d7c d445h g6g5i d8d7d d8d7j 4847k d4*5h
81: d~d7g d~d7h d847i 44.54 84.5. d445f d4c3g d4c3f d4e5g h8h2d
91: $hlh2D hlh2D -2474 hlli2Z hlh2U hlh2D hlh2Z hbLh2F h1h23 -241"

101: -245v h~h2D hlh2G -243A hllL2? hlh2V hlh2D hi1h2D hlh2D h1h2D
III: hlh2D -2414 hlh2D h1h2D hlh2D hlh2D hlh2E hlh2E hlh2Z hI112Z
121: hlh'l hlh2Z hlh2D h1h2D hlh2Z hlh2F h~h27 hlh2G hlh2D h1h2G
131:- hlb2D hlh2D hlh2D hlb2D hlh2D h~h2D hlh2D hlh2G hlh2D hlh2D

253.99 140 29397772 <a -241 R:h2. K:h2 g5 Qf5 3:f5 # e:fS Qh8. Kg2
Rb.h2. ***(h~h2l***

Depth Modes
0 2.
1 7
2 6
3 21
4 34
3 23
6 i8
7 17
8 7
9 4

10 1
11 1

5 What Is the Rationale for a Working 6* Search?
It is one thing to propound an algorithm, and show examples aflit in action. However, it is still more

satisfying to achieve a notion of why such an algorithm should work. We have shown that B*'s analysis is
strongly dependent upon notions of:

1. Comparisons among alternatives with a view toward terminating when a clearly best
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11 coment: After the root nods is expanded (node 1), this is the state of
If things. Since Black in the player, negative values are preferred.

TargetVal.-1417 SestReslVals-70 ZradBesta-66 Minkct-O. 15
ItI coinent: MinAct is the probability level below which a move is not deemed
11 an worth expanding. TargotVal is based upon optimism available.
I I OptVal RealV PessV OpVtlrb
c8h3 1 -296 -70 327661 0.0000 it This is the bost move thus far
d~d7 1 -2764 -66 32766] 0.4993
h8h22 [ -4621 456 32766] 0.6311 11 Selected for Xpand; best Optlrb
and 37 inferior moves

NWOe 2: Rzh2.
h8h2 E -4621 453 32766] 0.6309

Nods 3: R:h2+ K:h2
d~d7 E -2764 -66 32766] 0.4981
h8h2 1 -2764 207 32766] 0.4151

and 37 inferior moves
11 coments All control parameters are still the same, but now d~d7 has the
11I best Optlrb since h~h2' s OptVal has worsened (though RealVal improved).
If go d8d7 (which threatens mate in two by Rh2+; X:h2,Qh3++) is chosen next.

Node 4t Qd7
d~d7 E -2764 -85 32766] 0.0000
New Best Move, New Neat RealVal, Now PV <= -85 Qd7 Qd2
New TargotVal--1446

Node 5: R:h2. K-h2 Qd7
Now TaxgetV&l--765 11 Com~ent: The failure of this threat

11I reduces expectations by quite a bit.
Nod" 6: R:h2. Rzh2 Qh8+

Node 7: Qd7 Qd2
d~d7 C -1807 -188 327661 0.2572
Now sest RealVal, New PV Qd7 Qd2 Qh3
New TargotVal--894 11 Cumtent: Reducing TargstVal has made d~d7

11 into an acceptable action. now with some success
II it goes up.

Nod* 8: Bg4

Mode 9: g5

Node 10: R:h2+ K:h2 Ng4
New Targstval--543. If Comment: Has not found the right idea yet, but is

11 narrowing down the possibilities.

Figure 8: Detail of First 10 Nodes

alternative emerges.

2. Use of optimism to guide the search.

3. Finding lines of play based upon simple resistance by the Opponent before allowing him to
venture to find a refutation in the same style as the Player used.

4. Using probability distributions to capture the notion of goodness.
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It is legitimate to speculate whether there exist any comparable notions in the real world that are similar
to these.

1. The notion of comparison is fundamental to all intelligent activities, and the word "better" is
found abundantly in the protocols of chess players collected by DeGroot [131.

2. The notion of optimism is also to be found everywhere. Human ambition is based upon
optimism. Thus, any attempt to find something that is not immediately apparent must in
some way be supported by an optimistic view of what is likely to happen.

3. The notion of optimism being met by firm resistance may be new. There are certain
similarities to finding solutions in AND/OR trees. The correct strategy at an OR node is to
examine the branch that is most likely to succeed, while at AND nodes it is correct to
examine the branch most likely to fail. Thus, at GOP nodes B* acts as if it were an OR
node, trying to find the best possible alternative. Obstructor nodes are AND nodes.
Examining the node with the greatest RealVal first is the most likely way to terminate the
search. This node has established its RealVal as best, and is most likely to make the whole
branch fail. This paradigm seems to capture what is going on in thinking about moves in a
two person game.

4. Probability functions have long been known to capture the essence of subtrees, not only in
the work of Palay but also in [25]. Probability densities and the notion of fuzziness go well
together and produces robustness. Point-value representations usually aim for too much
precision and can end up being catastrophically wrong.

Thus, the B* search relies upon fundamental mechanisms that appear to be in ready supply in human
intellectual activity. It is interesting to note that the idea of finding a crisp method of terminating the
search was motivated by observation of human chess players. The notion of optimism is also supported
by such observations. However, the first author has long held that human protocols just capture the tip of
the intelligence iceberg. Thus, the need for distributions, and the need for the GOP/Obstructor relation
are not pointed to by anything we know of in the literature. They are the result of experimentation to find
a workable algorithm.

6 B* Hitech and its Experiences
The present paradigm was not developed in a vacuum. The algorithm was implemented on the Hitech

special purpose hardware [14, 6]. Most of the problems and solutions discussed herein were first
discovered during the implementation which began in the fall of 1990.

6.1 Development and Testing of Early Versions
Initially, we attempted to combine the Conspiracy idea with the B* paradigm. As related in Section 3.1

this was not possible. The early development of B* Hitech dealt with how to evaluate the optimism of
checks and mate threats, and how to deal with the notion of threat in general. Our findings are related in
Section 3.7. Palay [24] had already investigated these problems and found certain remedies, but these
were not quite good enough. The key to progress was being able to compare the lines of best play in the
probe searches that produced both the RealVal and the OptVal. This allowed the discrimination of moves
that were truly threatening from those where the threat was unlikely to be real because the threatening
piece could be removed without any detriment for the opponent. This type of winnowing was absolutely
necessary to reduce the number of moves worth looking at to some reasonable number that could be
processed within the effort limits.

Much trial and error was involved here, since it was not at all clear, a priori just how much optimism
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good moves needed to have in order to be preferred, and in what order different types should be
investigated. We believe that this is rather dependent on the evaluation function. Our experiences are
described in Section 3.7, and we believe any programmer used to bringing up systems such as this could
readily do the tuning appropriate for his system.

Once these knowledge problems were ameliorated, it was apparent that B* Hitech was doing very well
on tactical problems. It was using the probability based approach and getting better results on the same
set that Palay used in his thesis. In fact, these results were comparable to the results that had been
achieved on this set by the best programs16 . One reason was that we were using 3-ply probe searches,
whereas Palay, due to computing time limitations, was only able to use 2-ply searches. All these
searches are with quiescence, as a search without quiescence does not produce reliable values.

At this point, we began to run practice games against tournament (Brute-Force Alpha-Beta) Hitech that
had an accredited USCF rating of 2400+. We had not yet dealt with the GHI problems, but were content
to find out how well the new program could compete against the old.

In tactical situations the new program at least held its own with the old, but in positional situations the
old program usually found steady answers while the new was at a loss for what to do. It was in these
circumstances that we found that having a dithering factor (allowing moves to be tried that had less
potential but had been explored less) was very useful. Dithering was a function of the number of node
expansions in a subtree and the OptPrb of that subtree. Thus, a certain amount of OptPrb would be
discounted if the subtree had already had a great deal of attention. This provided a moderate breadth-
first component to the search. Hitech is smart enough to recognize a good position when it sees one.
However, the goodness may not be apparent until a depth far removed from the root of the tree is
reached. Thus, the existing optimistic functions could have considerable difficulty in plotting a course to
such a position. Therefore, in positions where there are no clear tactical issues, the program is
encouraged to explore those moves that have some potential for improving the position generally. This is
an important facet of this work, as it is essential to be able to play this common type of position.

In the fall of 1992, after about 1.5 man-years of effort, the new program was still running at about 3
times real-time; that is about 10 minutes and 350 nodes/move. However, improvements in various
decision procedures, and the realization that being able to think ahead on the opponent's time would
produce certain gains, eventually got B' Hitech to the point where it was reasonable to believe it could
play at the average rate of 3 minutes/move. We now had to put in things like time controls, tight effort
limits, thinking ahead on opponent's time, and other little things that are needed in a tournament program.
Because B* Hitech was not completely a real-time program, we determined that when the time remaining
got too short, it would ask to be switched over to tournament Hitech which could manage time better, and

be sure to forge a reply no matter how little time remained.

In test games versus tournament Hitech, B* Hitech got between 35% and 40% of the total points. Most
games were draws. It frequently got very strong positions but was unable to produce the consistent play
to win. When it got into trouble it seldom escaped. It did, however, win some very nice games, based
upon pure depth of calculation, and in these wins it beat tournament Hitech in a way that only very select
humans had been able to do (see Appendix). But this only happened about once out of every 20 games.

'rthts early version of B" Hitech got 286 right out of 299 of the positions in the book of standard tactical problems (261.
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However, these results were very encouraging, and certainly not taken for granted when the first author
began this work.

This version of Hitech participated in three tournaments, being subject to some improvement, albeit
with new bugs, each new time out. Since B* Hitech was able to play at only approximately 1.5 real-time
we had to arrange for a transition to Hitech 5.6 when time became too short. Also, in the endings, we

deferred to Hitech 5.6. The results are shown in Table 1.

Tourney Result Place

7th World Computer Ch . 1992 3 - 2 7th out of 22.
ACV Internet. Coup. Champ. 1993 3 - 2 3rd out of 12.
ARGON Utman-Computer Tourn. 1993 3 - 3* 14th out of 32.

(*) Some of these games were played by Nitech 5.6
as bugs were founid and corrected in 3* Kitech.

Table 1; B" Hitech Toumament Results

The result of the AEGON tournament where humans play only computers and vice versa, is somewhat
marred by the fact that B' Hitech had a serious bug, and we only played it in two games, in which it
scored 1-1. However, the results in general seemed to indicate we were in the ballpark of a reasonably
competitive program.

In other testing, we found that the original set of problems in (26] were no longer much of a challenge,
and switched our major testing to a volume 117] that we had recently been using to test tournament
Hitech. This volume contains positions that are much more difficult as they intermix tactical with
positional and strategic themes, B* Hitech outperformed tournament Hitech on quite a few problems in
this set, and discovered several errors in the book.

6.2 Testing of the Most Recent Version
The most recent version is really the first that we feel is relatively bug-free. The structure of Hitech is

very complicated, and there are many opportunities for error. The search control code alone, is over
1000 lines long. The latest version appears to have no difficulties with GHI problems, and this has made
it possible to solve some very difficult problems.

6.2.1 How Problems are Scored
The book "The Best Move" [17] that we used for testing has been widely regarded as the best

instruction book for tactics and position play combined. We were quite surprised that out of the 230
examples in the book over 50 contained errors, some quite serious17 . Each problem can earn the solver

"17The reader may wonder how we can determine that a highly regarded book contains errors. The method used is to investigate
positions where a program disagrees with the book. If in following te recommended line, the program finds some obvious error or
improvement, then one must conclude that the book is errorful. Thus, this is a dean scientific approach to the validity of test
material. Of course, it Is always possible that both Me book and the program make the same error, however, we will not concern
ourselves with that case. It should be noted that the first author, a former chess by correspondence World Champion was unable to
find any of these errors, and was instead enthralled by the imaginative presentation. The competence of the two programs is what
brought the errors to lWt.

There is an amusing experience that can be related about the use of the book. There are two problems (#166 & #187] from the
same game. In the first the book indicates that Me situallon is not yet rp for the win which must be prepared. In the second, it
gives a long and involved win. Both programs find a win in the first position, which is very delicate and dearly escaped the attention
of the participants in the game. Neither program finds the win in the second position under tournament settings.
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a certain number of points, depending upon whether it
"* Judges the value of the position correctly,

"* Finds the best first move, and

"* Finds the best follow-up line.
We took the approach that the book's method of scoring was correct (we do indeed believe it is excellent),
and when the given solution was wrong, we gave the intended number of points for the correct or better
solution. When a program made the correct first move, but the principal variation did not represent best
play thereafter, we continued the game until the program either found the best play or deviated from it.

Recall that both the B' and alpha-beta algorithms are not charged with anything other than finding the
best first move. Thus, a given first move could lead to the win of a rook, but it the algorithm believes it
can win a pawn by the first move, and no other first move can do as well, then it is justified in making that
first move. B° Hitech will do the minimal amount of work to convince itself in such a situation. Brute-force
Hitech may find the correct first move, but the principal variation it tenders in support of its decision may
not be the best. Therefore, both are given a chance to pursue their idea of the best line of play as the
game continues. If this is the correct line they get full credit, otherwise whatever partial credit the book
deems appropriate.

62.2 Test on a Book of Problems

pOag Its Hitech A-3 4xT'ixm S* Hitech 2xbodte Pro]b+1

Opmeing 28 18 22 17 17 17

KidWwae 837 559 587 547 604 613

Inding 235 166 179 145 149 151

All 1100 770 815 704 765 781

Table 2: Results of Tests on 'The Best Move"

Table 2 shows the performance of the two programs on the set of problems in the book "The Best
Move' [17]. The first column shows the maximum number of points that it is possible to get in that
category. The next five columns show the performance of five different progranns by type of position. The
five programs are respectively tournament Hitech, that Hitech given 4 times as much time (a factor of 4.5
allows a one-ply deeper search), B* Hitech at tournament settings, B* Hitech allowed twice as many
nodes (which amounts to twice as much time), and B' Hitech with the probe searches going 1-ply deeper
than normal (which amounts to 4.5 times as much time).

The results show that Hitech 5.6 is slightly better than B' Hitech in all phases of the game under
tournament conditions. It is interesting to note the performance of the other programs that represent
various ways of investing additional time, if such were available due to better hardware in the future.

In the opening, Hitech 5.6 benefits from going I-ply deeper than normal by improving its performance
by 22%. On the other hand B* Hitech does not benefit at all from having more time to explore or by
having deeper probe searches. This clearly indicates that B' Hitech's understanding of the opening is
limited In some way that the deeper searching Hitech 5.6 is not.
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In the middle game, we see the potential of the B* search. Under tournament conditions Hitech 5.6 still

outperforms B* Hitech. But when given 4 times as much time Hitech 5.6 improves by 5%, while B° Hitech

improves 9%/6 with a factor of only 2 more in time. Some additional improvement on this is seen if the

probe searches are made one ply deeper, which allows a still better understanding of threats.

In the ending, it is again a case of the brute-force search being clearly better, although the

improvements in B* Hitech with additional time are slightly better than those of Hitech 5.6. We should

note that 3 or 4-ply probe searches are just not enough for B* to understand endgame play at the Master
level, without additional knowledge. As indicated, B* Hitech runs in tournament mode only until the

amount of material is reduced to a certain level. It then defers to Hitech to finish the game. We deal with

some of the issues of how to remedy this in Section 9.

6.2.3 Games versus Tournament Hitech

Opening TYpO Closed somi-Open open Total

Points for 3* 2.5 4.0 3.5 10.0 41.7

Points for A-8 5.5 4.0 4.5 14.0 58.3

Avg. 3* Stowped 35.5 29.4 30.0 32.6

Avg. Gome aided 54.1 46.4 41.4 47.3

Table 3: Test Games versus Hitech 5.618

Table 3 shows the results of 24 games between B* Hitech and Hitech 5.6. These games were the last

tests made and came after a number of serious bugs were remedied, including bugs in the hardware and

some very old software bugs. The latter two affected both programs. The games were played from 12

opening positions which represented a variety of situations. For each starting position, two games were

played. In one B* Hitech had white, and in the other it had black. Both programs had identical time limits

for making moves. Thus, the contest was completely balanced. Games were terminated when one side
had won, when a draw was declared by repetition or insufficient material, or when B* Hitech announced

that it was no longer qualified to continue to play the current ending because of reduced material. In the

latter cases, the following procedure was used to evaluate the outcome:

"* If the programs agreed that neither side had more than .125 of a pawn advantage, the game
was declared a draw. This was the outcome of 3 games.

"* If the programs agreed that one side had an advantage of two pawns or more, the game was
declared a win for that side. This terminated 6 games.

"* In all other situations, the game was continued by tournament Hitech playing both sides, with
appropriately inherited time information, until a definite result was obtained. There was a
proviso that if both programs agreed one side had the advantage when the game was
continued, it was not allowed that the other program win the game. This proviso never
needed to be invoked.

This procedure simulates the play of B* Hitech under tournament conditions. The conditions for

terminating play were decided on before any games were run, and were invoked to remove randomness

16Vpen. SeoinIOpen, and Closed refer to the character of the position as determined by a particular starting position. Closed
mears no pawns have been captured or that two opposn center pawns abut; Semi-Open means one of the two center pawns of
one side has been captured, and Open means that at least one center pawn of each side has been captured.
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that could occur in nearly even endings due to some horizon effect [31, or other aberration. They act

equally on both programs. It can be seen that the above is a purely mechanical procedure, requiring no

chess knowledge.

B* Hitech got 41.7% of the total points. This is a very good result. It certainly is decisive to lose 14-10.

However, it is also amazing that a selective search progiam can get this many points from an established

brute-force program. It should be remembered just how much work the computer chess community has

put into the development of the alpha-beta search. It is now a very robust vehicle, capable of performing

in all phases of the game. B*, on the other hand, requiring many more control decisions, has not had

nearly that amount of work put into it (despite some intensive effort on this project). We have avoided the

problem of B* Hitech's poor endgame play by not allowing it to play the ending. 13 games were played

out in this manner. We have included in Table 3 the average move of switch over from B' to regular

Hitech for these games, and the average move when the game was over. This will allow the reader to

gauge the degree of involvement of endgame play by tournament Hitech in finishing off games of B*
Hitech. It is not surprising that games in closed positions were continued further, as swaps of material are

rarer in such positions. In its current state, B* Hitech with Hitech 5.6 playing the ending is rated only 65

points worse than tournament Hitech on the human scale. This puts it near a US Chess Federation rating

of 2350, based upon tournament Hitech's rating of 2413, and makes it the best purely selective search

chess program known 19 .

Looking in detail at Table 3 one can discern that almost all of B*'s deficit can be attributed to its play of

closed positions. In such situations strategy is of paramount importance. In Hitech 5.6, the battle-
hardened veteran, strategy has been built in by means of pattern recognizers that find useful patterns far

from the root of the search [6]. However, B* Hitech can only find patterns 3-ply removed from where the

probe search originates. This frequently does not allow the patterns to be fully developed as yet. Hitech

5.6 occasionally finds some "deep" idea as a result of brute-force search, but independent of the pattern
recognizers. However, more frequently B* Hitech found such ideas. This resulted in turns of events, that

Hitech 5.6 did not have an inkling of until the game had turned decisively in the direction dictated by B*

Hitech. However, to become a real competitor B* Hitech needs, at a minimum, to be able to play closed

positions better.

7 Discussion of Test Results

7.1 Search Depth and the Evaluation Space

One can think of a search space as a surface with ridges on it. The X and Y coordinates define the
location in the space, and the Z coordinate is the value of the evaluation function at point Xi, Yi. In an

ideal domain it should be possible to roll a marble from any given point and have it roll to the low point in

the terrain. This could be the case if our evaluation function defined a smooth space. But in complex

domains there are bound to be ridges. Ridges introduce changes in gradient that make life difficult for the

marble that is trying to find the lowest point.

"19T'here are micro chess programs that may be better, but these programs use one of the hybrid search strategies discussed in
Section 2. We wish to make the point that the B* paradigm has been pushed very far.
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For a searcher to successfully navigate such a surface, it must be able to see over sufficient ridges to
have some idea of where progress is to be made. Brute-force programs adopt the strategy of searching
to the largest possible radius from the origin. This is good because with each additional ply of lookahead,
the probability that one is looking over the last ridge is increased. It is presumed that after crossing the
last ridge a marble would smoothly roll to the lowest point in the space. The probability that an additional
ply will find the last ridge is not very high. Thus, this approach is based on a coarse understanding of the
properties that cause a surface to have ridges.

It is possible to have a "strategic" outlook that would pay attention not only to the Z coordinate of the
surface but also to some compass direction. Such a strategy would be able to implement an idea such as
"head North-East for at least 100 miles regardless of the terrain you encounter". That is a long-term
strategy; one that could outdo a searcher paying attention only to the height of the places on the surface
at a given radius from the origin. Of course, correct strategies may not be easy to come by.

So the real question for a searching program that goes to depth D is: how much "strategic" knowledge
is required for it to navigate well? Since one can never know what is over the next ridge until one has
looked, this appears to be a hopeless problem for which at best heuristic approximations are possible. It
is possible to have two apparently identical states; one leading to some great gain and the other to
nothing. Yet both have been achieved by following some strategy that is as yet not successful.

So a selective searcher by taking small steps in what appear to be good directions hopes to be able to
peer over more meaningful ridges than the brute-force searcher. This can very well be successful as
demonstrated by the success of the various selective extension strategies used in connection with the
alpha-beta search. The two extremes are:

1. A smooth space where searching further is clearly better.

2. A highly ridged space, where having any clue as to where the ridges are to be found will be
a win.

It would seem that smooth spaces can be avoided by having enough domain-specific knowledge so that
there are almost always some interesting directions to be explored. It should be noted that the very
notion of strategy implies the achieving of some goal. It is very risky to do this in the alpha-beta paradigm
since the predefined halting of the search may find the strategy at various stages of development. Thus,
in the alpha-beta paradigm it is very difficult to assess the success of a partially implemented strategy,
since it is not certain whether it can be fully implemented.

The correct way to implement a strategic outlook is with bounding values. This is exactly what B*
provides. Then even shallow searches can follow a strategic idea until it either proves successful, shows
itself to be unsuccessful, or must be abandoned because of resource limitations. A brute-force alpha-
beta search has no notion of potential, and must abide by whatever result it finds at its search horizon.
This is why the B" approach should be preferred. We have as yet only implemented a few strategies
which were discussed in Section 3.7. This whole problem is discussed at length in [9].

7.2 B* Search Examples
One interesting and extreme example of the differences between the understanding of a brute-force

and B" search is shown in Figure 9. Here black can make a draw by correct play. Tournament Hitech
sees that after 1.- f51; 2. Ke5,M; 3. Ke4,f3; 4. Ke3,h5; 5. Kf2,h4; 6. Bd6,Kh3 the position is a draw
because 7. K:f3 is stalemate. This is the kind of thing that humans can easily miss, but tournament
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Figure 9: Black to Play

Hitech finds it in 8 seconds. B° Hitech on the other hand, looks at 10 nodes to decide that 1.- f5 is the
only reasonable move. It continues that way until it is faced with 4.- h5 where it chooses h6 instead. But
this makes no difference. It goes down the only path available to it and at the end, finds to its surprise
that the position is a draw. Actually, neither program understands the position is a draw without a great
deal of additional work. They both will avoid the move K:f3 as long as possible, always believing that
white still has a chance as long as he -voids this move. This is what every computer program that plays
in tournaments would also do. However, it is interesting to see how B* Hitech only looks at enough of the
solution to be sure what the best next move is, while tournament Hitech looks as deeply as it can.

Figure 10: White to Play

A more typical example of how things work, where B* Hitech looks much deeper into a situation can be
seen in Figure 10. This is from an infamous article by former World Chess Champion Botvinnik [10], in
which he demonstrated that his "program" did not at all understand the position 2°. However, the resulting
commotion about his failure inspired us to see that B* Hitech would solve this problem correctly, since this
is exactly the kind of problem it should excel on. This resulted in some refinements in our treatment of the
GHI problem. The way B* Hitech now solves this problem is exemplary of its best play.

2°From a game Kasparov-Ribli, 1991, in which the World Champion missed a win.
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Within 120 nodes B* Hitech discovers the key move 1. Rd8!!, and has found that if R:d8; 2. Rd5!! wins.

The principal variation gives 1. Rd8,Q:b5; 2. Qd6!,B:f2+!; 3. K:f2 because B* Hitech considers this to be

the line that gives White the best chances. This is correct. After Black plays Q:b5, it quickly decides on
Qd6!. Then after B:f2+ it realizes that there are really two competing alternatives. It explores K:f2 to a
depth of 29 ply, and finds the complete win. The principal variation it delivers is 3. K:f2, Qf5+; 4. KgI !!(not
Kg2 whereupon Qd5+ gives good drawing chances),Qbl+; 3. Kg2,Qe4+; 4. Kh3,Qf5+; 5. g4,Qfl+; 6.

Kg3,Qel(or gl)+; 7. Kf3,Qfl+; 8. Ke3,Qh3+!; 9. Kd4 leading to a winning position. Since it does not
consider that longest resistance is the main criterion of successful defense it does not give the line e5+!;

10. Kd5,Qg7+; 11. Kc5,Qgl+; 12. Kc6,Qhl+; 13. Kb6,Qbl+; 14. Ka7,Qgl+; 15. K:a6 and there are no
more useful checks. However, this line is documented in its log as part of its supporting analysis, as are

less interesting sidelines such as 9.--Q:g4+; 10. Kc3,Qh3+; 11. Kb2.

To understand the chess part of the analysis, it is useful to note that if instead of 3.--Qf5+ Black plays

3.-ReS, then 4. a4! forces Q:a4; after which 5. Qe7! wins. But not immediately 4. Qe7?, as Botvinnik's
program purportedly played, as then Qb6+ wins. B* Hitech discovers all the analysis in less than 10
minutes. The major point of this example is to show how deep the analysis can go when it makes a top

level decision difference in the choice of moves.

When this position was presented to tournament Hitech it played 1. Rd8, expecting: Q:b5; 2.
Qd6,B:f2+; 3. K:f2,Re8; 4. R:e8+,Q:e8; 5. Q:a6 with a small advantage. Then after 1 .--Q:b5; 2. Qd6,B:f2+
it found that Black had better play, and after 3. K:f2,Qf5+; 4. Kgl ,Qbl+; 5. Kf2,Qf5+ it was content with a

draw, since it could see no advantage to venturing out into the open with 5. Kg2,Qe4+; 6. Kh3,Qf5+; 7.
g4,Qfl+; 8. Kg3. The critical difference here is that B* Hitech has its optimism (the mate threat at f8) to
keep it going, while tournament Hitech assesses the current situation with no understanding of such
issues. We have confirmed that many top chess programs behave exactly like tournament Hitech, being

afraid to venture into the open with the king, without being able to see the end of the situation.

There are some general observations on the interaction of a selective search and a brute-force search

that are worth making:

"* When the selective search program has the better position, it will attempt to win by finding
ideas that improve its position further. This is mostly done in an excellent manner. However,
sometimes it goes astray when not fully exploring all defenses and thus overlooking some
possibility that can foil an idea. On the other hand, the brute-force program will defend
meticulously in such situations. This is with one exception: When the brute-force program
sees that everything it can try has approximately the same result, it then chooses to defend
in a manner that looks random to a human. Since it has no notion of difficulty, this results in
not requiring much understanding for the opponent to make progress. This phenomenon
reminds strongly of a similar point we made with respect to games in which a program that
searches to depth N has the better position against a program that searches to depth N+k
[8]. Here the deeper program will frequently see too much for its own good, and retreat

without any notion of whether it is offering resistance in the human sense.

" When the brute-force program has the better position, it essentially plows ahead always
considering the best defenses as it sees them (which are usually the correct ones).
However, a selective search has little idea of what a mdefensive" idea is. It is essentially
impossible to define statically, and thus would have to be the result of some probe search
which tells what the opponent is threatening. The only implementation of something such as
this in B* Hitech is what comes up during the VERIFY part of the search. However, this is
only in response to moves that have been proposed by the SELECT phase, and these are
essentially random when one considers that a defensive idea is called for. We intend to try
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to identify defensive situations, and deal with these in a somewhat different way. It is clear
that, while the extra-move paradigm is an excellent way of gauging optimism, there are
several situations in which other methods are required in order to have some way of "lighting
a path" for the search.

In general, the depth that a B* search reaches has little to do with the n,,mber of nodes expanded. If
the position has a forcing character, B* Hitech will plummet to whatever depth is required to find a
solution. Explorations to depth D have been found empirically to seldom take more than 1.20 nodes,
which for D=20 is only 38 nodes. It is in situations that lack a forcing character that additional effort is
useful. Unlike the forcing positions where the deepest node expansion could be at depth 35 or so, placid
positions seldom need be explored to a depth greater that 14. We believe the effective branching factor
for such positions is in the range 1.5 - 1.6. Thus, the expected number of nodes needed for exploration is
between 1.514 = 292, and 1.614 = 720. It is in this area that the most additionai computing power could
be used. This is because the OptVals are not always able to capture the ideas that are pertinent, and
large searches are required to find out if anything interesting can be done. Of course, it is in positions
such as this that the brute-force search performs so admirably. However, to do a 14-ply brute-force
search would require the power of 4.55 = 1845 Hitech's in a single machine. With that much power, it
would be possible to relax the criteria for search termination, and investigate much more of the tree than
is currently done.

It should be clear from the above data that B* has its greatest advantage over alpha-beta when the
branching factor of the tree is high. This augurs well for its use in games such as Go.

7.3 The Horizon Effect and the B* Search

_AJ_

Figure 11: White to Play; last move was d7d5

Let us assume the position in Figure 11 occurs as a leaf node in a brute-force search. Since white has
no meaningful captures and is not in check, the quiescence search will allow him pass, and the position
will be scored as good for white since he is ahead in material. It is possible that a brute-force program
with extension heuristics may notice that white has two pieces en prise, and that there is a good
possibility that it may lose one of them. Such a fact could cause the search to continue and come to the
conclusion that white is, in fact, slightly worse off. However, detecting such a situation is computationally
expensive, and not always correct. For instance, if the black king were at f7, then the pawn at d5 would
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be pinned and the N at e4 would not be en prise. This is but one kind of problem that brute-force

searches have in deciding whether the score being attributed to a leaf position is correct. Other kinds of
problems occur when a piece is pinned but can't be captured immediately. Other types of problems are

discussed in [3]. It has been the view of the computer chess community that such problems can be

largely done away with by ever deeper searches. That appears to be true; however, if such a problem

occurs in a critical branch, it will cause bad effects in the search.

Now let us examine how the B* search deals with such problems. Let us say that the B* program is

playing white in Figure 11, and this is a leaf position in the principal line of play at the end of the SELECT
phase. Now when the opponent begins to VERIFY, he exerts his optimism in connection with his last
move d7d5, and notices that with an extra move he will be a pawn ahead after the capture d:c4 or d:e4.

This optimism will cause the search to want to explore the consequences of d7d5, and white will be
forced to respond because black wants to know what is going to happen. In this way the full

consequences of the position will be investigated until it is clear what will happen, or that it is not of

interest.

This same kind of I-have-optimism-that-needs-to-be-investigated attitude will be applied to all leaf

nodes in which good effects are waiting to be discovered. It is only necessary that the good effect be
reasonably probable and can be found within the probe search, Thus horizon effects, which push

undesirable results over the search horizon, do not seem to occur in B' searches. If they do, they must
be the result of the probe search (which uses brute-force) being subject to a horizon effect. During this

work, we have seen some bad bounds being brought back for this reason. However, we have noted no

horizon effects of any other type. This is clearly an important consideration, all other things being equal.

Figure 12: Black to Play

In Figure 12 Black (Hitech 5.6) plays Qd7 based upon a 10-ply search, unaware that there is any

problem. Of course, any human would be leery of such a move, since the response d5 creates a situation
where it is problematical whether the bishop at e6 can survive. However, Hitech 5.6 horizons the

situation with the variation 1. d5, Rad8 after which the bishop can delay moving for a move or two, and
even after it moves it can not be captured immediately. After the faulty Qd7, B* Hitech does a 118 node

search in which all except 17 of the nodes expanded are in the subtrees of the responses d5 and h:g
which are the only two moves that good humans would look at. It then decides on h:g, but quickly finds

that this allows f:g, after which d5 could be met by Bf7. It then immediately switches to d5, and after the
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VERIFY comes up with a principal variation of 1. d5,Bg4; 2. f3,B:h5; 3. g4,B:g4; 4. f:g4,Q:g4; 5. Qd2,c6

which is about what a human Grandmaster would calculate here. To do this B* Hitech penetrated to a

depth of 14 in certain parts of the tree, but the whole analysis revolved about the issue of whether the

unfortunate bishop at e6 could escape, whereas Hitech 5.6 had no inkling of the problem. This is an

extreme but very to the point example of the difference in outlook between BS and its brute-force

competitors.

8 Speed and Potential Parallelization
Our method of getting bounds by the use of shallow searches, requires large quantities of computing

power. Yet, having tried to produce bounding estimates by means of static evaluation functions, it

appears clear that there is essentially no choice but to do shallow searches at the current state of the art.

This limits the use of the B* search algorithm to machines that can do the required shallow searches in

real time. It is certainly conceivable that in some domain other than chess it would be possible to get

bounding estimates more cheaply. However, it is the first author's experience that when it is easy to get

good bounds statically, there is no significant problem to be solved.

The data collected shows that the deeper the probe searches the better the problem solution. Also, the

larger the set of nodes investigated, the better the solution. This raises the issue of how to use additional

computing power.

While it may be possible to improve the performance of the system by running it on a faster chess-

specific piece of hardware, this is unlikely as it would require the construction of a machine especially for

that purpose. It is much more sensible to think of how one would use a general-purpose parallel machine

to run the algorithm.

Fortunately, the B* algorithm decomposes very nicely for limited parallelism. Since there are on

average 35 legal moves in a given position [301, one can use on the order of 70 processors to do the

probe searches that we use to get bounds. There will at times be as many as 70 legal moves, and at

times very few, however, it seems clear that 128 processors could be kept busy doing in parallel what
Hitech does serially now. At present Hitech takes about 2 seconds to do all the processing of a node.

With 128 processors equal to Hitech, this could easily be reduced to .02 seconds. The fact that certain

processors may not finish on time has been dealt with in the literature on the tree-splitting approach to
parallel alpha-beta searching, At present Hitech searches about 120 nodes in the three minutes it is

allotted on average for a move. These 240 seconds contain about 80 seconds worth of work done on the

opponent's time.

It takes a factor of 4.5 more to do an N+1 ply search than it took to do an N ply search (141. If a

machine were capable of doing a 13-ply search, it could instead do 37,367 6-ply searches. This would be

enough to investigate about 747 nodes, which should be sufficient in 99.9% of all cases. In fact, since the

search would use less than half this number nodes most of the time, it will have saved up enough time to

investigate any difficult position that may come up. It should be remembered that B* effort scales up at a

sub-exponential level, so that an increase of a power of 2 in effort has a significant effect.

The power of a 6-ply probe search is difficult to imagine. We estimate that a 3-ply search is

approximately equivalent to the visualization of a Grandmaster without doing any calculation. A 6-ply

search sees so much more than this, that it would be difficult to compare it to anything. Its perceptual
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power could only be described as awesome. To be able to generate a tree of over 700 nodes based
upon such powerful perception would produce a kind of chess that is difficult to imagine. The coverage of

the germane part of the tree is bound to be excellent, and the view of where to go, which is already

excellent based upon the 3-ply searches that Hitech uses, would be so much more apt to see unusual

things that it should be very formidable. We are now in an era where advanced micro-processors could

be coupled to come very close to the above. In a recent speed chess tournament in Munich a program

named Fritz3 running on a Pentium Plus processor finished tied for first with World Champion Kasparov
at the head of a field of 18 of the World's best Grandmasters. This program is fast enough to do probe

searches of depth 5 in less .5 sec. Thus, 100 such processors could generate a B* search tree of 400+

nodes using depth-5 probe searches.

..... ..,... .. ..... .• ....... o .°= .o°° °..... .. • .......... ...... o.......... .....

Figure 13: Division of Labor Pays Off

In Figure• 13 th'e work tradeoff becomes clear. Each triangle represents a node expansion doing probe

searches. If that discovers something interesting, then the first move is a step in some direction that is

further explored. Thus, the triangles can reach to almost any depth. If it were possible to do 6-ply probe
searches, then the first would see almost half as deep as a 13-ply search. If that look-s interesting, it only
takes 7 more node expansions in the same sub-tree to reach the limit that the 13-ply search reached. if
the guidance was good in that particular line of play, it will have discovered all that the 13-ply search saw.

If the guidance was less than perfect then there is consolation in the fact that investigating this single line
of play is only .00615 of the total effort that the brute-force would have expended to reach this depth.

Thus, even a moderately informed program should have enough resources to reach the important parts of

the tree, and go well beyond the depth of 13 when required.

There is considerable overkill in the above calculations. According to our tests, a search does not need

to average 750 nodes. 500 would be more than enough. Hitech 5.6 normally can do 8.5-ply searches in
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3 minutes. Thus, about 1000 Hitech's would be required to do a 13-ply search21 . Further, if it should turn

out that 5-ply probe searches are sufficient, then this number could be reduced to < 200. Such computer

structures are now well within the state of the art. Even a factor of 50 would be very formidable. The

partitioning of effort would be to use a factor of 20 to do 5-ply probe searches instead of the 3-ply we

presently do, and to use the remaining factor of 2.5 to increase the number of nodes expanded from the

present 225 to 550. In a 1024 unit parallel processor, it would be reasonable to assume that 20 units can

effectively do in real time what one Hitech does, Then a speed-up of 50 is well within reach.

Another way of looking at this is that when there is an increase in power available, and this is enough

to search one ply deeper, than this could be invested by the brute-force approach by going from depth

(say) 12 to 13. However, it could also be used to increase the depth of the probe searches by one.

Based upon our limited data, it appears as if the power to run a 9-ply search is also enough to do 1200

3-ply probe searches. Thus, it would appear that an 11-ply search could do 5-ply probe searches, and a

12-ply search can do 6-ply probe searches. It is quite clear from our data and also from logical

consideration, that investing in the probe searches is more fruitful than going yet one ply deeper in the

brute-force search.

The only losses in this type of parallelism are due to waiting of processors to receive a searching

assignment. However, if the algorithm not only selects the best node to search but also the second best

one, then there will always be something to do. At worst, there will be some processing of a node that will

never be selected for expansion, but there will never be more than one such node. This means that such

a scheme will have a utilization far in excess of .5 for each marginal processor, probably .8 is a better

estimate. This is in stark contrast to machines that require cooperation in doing the alpha-beta search.

Here researchers are delighted if they can show a marginal utilization of 20% for each new parallel

processor. Using tree-splitting techniques, 4 processors cooperating on an alpha-beta search can

produce the work of 2.5 individual processors [18, 20]; however, any increase beyond 4 processors

appears to have small marginal utility. A recent thesis [151, claims a marginal utilization of 30% for large

numbers of processors. If this can be substantiated, then the following scheme is possible.

A single unit of a standard multiprocessor may require 10 seconds to do a 5-ply search. If one

assumes a 30% marginal utility, then it would require 17 processors to do the 5-ply search in 2 seconds.

So all the above figures must be multiplied by 17 to go from Hitech's to units of multiprocessors. This still

comes to only a 16K multiprocessor for a B* machine that can do probe searches of depth 5. All this is

well within the current state of the art.

What should be clear in all this is that increasing the power of a machine by a factor of 4.5 in an

alpha-beta search will only increase the depth of search by one ply. When search depths are greater

than about 9, such an increase will only have a very small positive effect. Further, as search trees get

ever larger doing alpha-beta searches, the effects of having distributed hash tables get more and more

severe, and efficiency is lost.

The implications of the above is that highly parallel machines can search all meaningful alternatives to

21Assunming no losses due to parallelization, which is not borne out by the data in the field. However, for our purposes we wish to
show how one can better employ such processors, rather than worry about how to avoid losses in the alpha-beta scheme. The data
we use here are already validated on a single machine doing alpha-beta search
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a depth that is quite formidable. Further, the distribution of the work load is conceptually quite easy, and

requires very little coordination among processors.

9 Summary and Conclusions
What can one say about the play of Hitech using the B* algorithm? It is very illuminating to watch.

When observing a brute-force search in a complicated position one never knows what to expect. If there

is some turn of events that can be made explicit by a depth 8 search, then there is no inkling of this until it
suddenly appears at depth 8. It is as if a grade D average student suddenly comes home and announces
he made the honor roll. When there are two pots of gold at the end of the 8 ply search, brute force will

the select the larger, and if there is no pot of gold, it will bring home the most pennies it can find. Any

ideas that exist can only to pointed to in retrospect.

With the B* search things are very different. One gets the feeling of ideas. This is because the notion

of threat carries the analysis in some direction. It is trying to do this or that. Much of this will, perforce, not
turn out; but that is the nature of exploration. However, as long as an idea is promising it will be pursued

to whatever depth it takes to come to a conclusion. Like humans, this search will bring back the first pot

of gold it finds, quite satisfied, and not go looking for more.

One cannot over-emphasize the importance of a timely termination of the search. It is illuminating to
find B* Hitech making a move without knowing what the opponent's best reply is. All that it knows is that:

"* It has found the best move, and

"* The opponent's best reply is not a timely topic before it makes its move.
All it needs to be sure of is that it is, in fact, the best move. This is the cardinal idea behind the B*

approach: to find the move that is considered no worse than all other siblings at the root. This

distinguishes the decisions made at the root level from the decisions made at lower levels. It
distinguishes the decisions that are made during the SELECT phase from those that are made during the
VERIFY phase. It is quite amazing to see B* Hitech make a simple non-capturing, non-checking move in

a few nodes of investigation, because it realizes it is the best. It could be something simple such as

occupying an open file with a rook, or moving a king toward the center in the endgame. These are things
that humans, too, do quickly. The move selected is obviously the best of a set of siblings, and does not

allow any important counteraction. Therefore, it is selected without much ado.

However, there are some things that the B* search still does not do very well. Chief among these is

defense, which is an area where the brute force search excels. We have tried a number of schemes to
improve its defensive play, but at the moment it appears best to try to have an Oracle that can decide

whether defensive play is called for, and if so switch to the brute force search.

One may wonder why it is so difficult to find good defensive moves. It seems to go with the territory. It
was not unusual that the best defensive human chess player was also the World Champion. This was the

case with Steinitz, Lasker, Capablanca, Petrosian, and Fischer. Not a bad collection. However, the main
point is that defensive play is very hard in the human style because one must anticipate all of the

opponent's worthwhile ideas, and figure out how to meet them. This is the kind of thing that a brute force
search does routinely. However, when it comes to following some important idea to great depth, then the
selective search does much better.
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Harking back to our original premise about "natural" searches, we believe we have accumulated some

evidence that there is a "natural" way for humans to search two-player situations. We feel this is as
ingrained as the notion that (A>B) & (B>C) -> (A>C). It is part of some fundamental human armament.

We have not tried to make a strong case for this, but made many oblique references to phenomena that

support this view. The fundamental properties of this search are the same as the precepts of the B"

search. Some of these properties can also be found in the protocols of chess players in [13].

* Search only until there is a clearly preferred alternative. This implies the need for strong
comparison of alternatives at all times.

e Use optimism to guide your search.

* Assume that your opponent will make steadfast replies while you are formulating your plan,
and then reverse the view to see if he can upset your plan by implementing his own ideas.

Our experiences show that the knowledge required to get good optimism is non-trivial. There are a

variety of situations, and each seems to require its own special optimism in order to produce worthwhile

moves. We have made no attempt to deal with how humans get their optimism functions, but merely

noted the difficulties that keep the notion of "extra move implies threat" from being a general notion. As in

many other domains, the acquisition of limited amounts of very important information is not sufficient to

completely conquer the domain.

Finally, it should be remembered how well the B" algorithm scales up with increases in power. The

present work was done on a piece of hardware that can in 3 minutes do a 9-ply brute-force search, or a
B* search with 3-ply probe searches. This confrontation is still minimally in favor of brute-force. However,

if one were to scale backward to 2-ply probe searches versus an 8-ply brute-force search, the latter would
win easily. So it appears from both analysis and experimentation that doing deeper probe searches is

more beneficial than doing deeper brute-force searches. A machine that can do depth-1 1 alpha-beta

searches, could do depth-5 probe searches. Such a B* searcher would almost certainly outperform the

time-equivalent brute-force program. Also, in games with a high branching factor B' has great promise.

Thus, the future of the B* approach appears bright.

10 Acknowledgements
The efforts of Andy Gruss who supported the second author in massive investigations of flaws in the

Hitech hardware is very much appreciated. We wish to thank Gordon Goetsch and Sergey Iskotz who

worked on early versions of B*. Jonathan Schaeffer and David Kosbie made valuable comments on the

final manuscript. Jay Kadane helped us in understanding some of the decision theoretic aspects of our

algorithm. This paper is dedicated to the memory of Allen Newell and Araxie Berliner.

11 Appendix
We here present some games that B* Hitech has played that are considered noteworthy.

Apr11 24, 1993. 4 0-0 5g7
White Black 5 c3 Nf6
B* Hitech Hitech 5.6 6 Rel .6

7 3.4 0-0
1 04 c5 8 d4 c:d4
2 Kf3 NC6 9 c:d4 bS
3 Bb5 g6 10 051? b:a4
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11 oaf6 B:f6 29 a:b5 c:b5

12 45 9&7 30 Qg4 Qd3

13 Q:a4 Qc7? 31 R&2 Q:e4

14 Mc31 B:c3? 32 R&7 gS

15 btc3 Q:c3 33 Qh5 Rf8

16 342 Qg7 34 Q:h6 Qel+

17 Qh4 ROB 35 Kg2 Ne3+

18 Dh6 Qh8 36 f:e3 Qe2÷

19 d6! Bb7 37 Kg3 Q:e3+

20 d:e7 B3f3 38 Xg2 Draw

21 3q51 Qb2 38.-Qe2; Kg3,g:f+; Xh3

22 Bf6 Qb6 leads nowhere.
23 gsf3 105

24 R04 h5 March 25, 1994.

25 Re5I 344 white Black

26 R:h5 Resign* Hitech 5.6 3* Hitech

May 1, 1993. 1 d4 Nf6

White Black 2 cA g6

Hitech 5.6 B* Kitech 3 Nc3 Bg7
4 .4 d6

1 d4 45 5 f3 c6

2 CA dzc 6 3e3 a6

3 *4 e5 7 Bd3 Nbd7

4 Nf3 e:d4 8 Nge2 b5

5 B:c4 Nc6 9 a3 Bb7

6 0-0 3e6 10 0-0 b:c4

7 3:e6 f:e6 11 B:c4 0-0

8 Qb3 Qd7 12 Qc2 .5

9 Qsb7 Rb8 13 Ratl e:d4

10 Qa6 Nf6 14 N:d4 Qe7

11 Nbd2 Bb4 15 042 d5

12 Nc4 0-0 16 *:d5 N:d5

13 a3 Be7 17 N:d5 c:dS

All book to here, now 18 Ba2 Rfc8

black gets into trouble. 19 Bh6 UbS

14 Rol Ebes 20 Rfel R:cl

15 Bd2 Bc5 21 R:cl ReS
16 b4 Bb6 22 b4 Qh4

17 3g5 h6l 23 Ne2? R:e2

18 B:f6 R:f6 white has the edge but his

19 Racl 43! 23rd is a terrible blunder based

20 RcdI RdS upon not seeing deeply enough.

21 N:b6 a:b6 24 Q:e2 Q:h6

22 Re3 R:f31 25 Rc7 B35!

23 g:f3 42 26 R.b7 Qcl+

24 Rc3 NeS! 27 Kf2 344+

25 Q42 bS 28 Kg3 QgS+

Hitech 5.6 almost played 25. 29 Xh3 Qh6+.!

Qa7,1fS1; Q:c7 when N:f6+ and A brilliant move based upon

black is much better. Also, letting the Q have access to d6.

25. U4, Qd4 is strong. Now The normal Qh5+ does not work.

black seems to have enough Now if White plays h3 to defend

play to draw easily. the =amte Qh4, then Qd6+ mates.

26 Re2 MCo 30 Xg3 g511

27 a4 C6 31 RbS+ Nsb8

28 f4 Qd6 32 Qe8+ Kg7
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33 Qe5+ B:e5+ 23 b:c5 Rbc6
34 1f2 g4 24 Ra5 RaS

Resigns 25 Rdl Rd8
26 Qd3 Qe8

April 16, 1994 27 8d6 .5
White Black 28 R:a7 Rd7
B* Hitech Hitech 5.6 29 Qb3+ Kh8

30 R:d7 N:d7
1 44 45 31 Qd5 RcS
2 c4 d:c4 32 f3 h5
3 e4 05 33 c6 Nf6
4 Kf3 ezd4 34 Q:e5 Q:c6
5 B:c4 3c6 35 Q:d4 Rd8
6 0-0 306 36 KIl Ne8
7 B:e6 f:e6 37 eS Kg8
8 Qb3 Qd7 38 Qd3 Rd7
9 Q:b7 Rb8 39 Qg6 N:d6

10 Qa6 Nf6 40 e:d6 Qb5
11 M]3<4 Bb4 41 Rel Rf7
12 Nc4 0-0 42 Qe6 Qb7
13 &3 Be7 43 Qe8+ Kh7
14 Ro1 Rb3 44 Rd1 Qb3
15 Nfe5 3:65 45 Qe4+ g6
16 N:e5 Qd6 46 Qd3 Q:d3
17 Qc4 Rb6 47 R:d3
18 Nd3 Qd7 Here the game was discontinued
19 Bf4 C5 because B* Hitech does not play
20 b4 c:b4 endings with such reduced material.
21 azb4 RcS The position is an easy win for
22 Nc5 B:c5 white.

The next two examples are both quite difficult to understand for a non-master chess player, but show
what B" Hitech is capable of at its best. Figure 14 shows the position from a game after 30 moves have
been played. It is instructive because it highlights the differences of "view' between the selective search
and the brute-force search.

Figure 14: White (can no longer castle) to Play

In this position, white is comfortably ahead with an advantage of two pieces for a rook. All he need do
is move his king to gl, where it is safe, and then he can win the game at his leisure. But, being a
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brute-force program, it does not believe in anything that exists beyond its search horizon. Thus, seeing

no danger, it decides it can augment its gains now.

May 5, 1994
white Black
Hitech 5.6 B* Ritech

31 Me5 N:e5

32 Q:eS Rb2!

A good human player might become suspicious of white's position after this black move. It can be seen

that white's king is now trapped in the center, being unable to cross the f-file, and being trapped on the
back rank. Yet, the seriousness of this is a matter of deep calculation. Both programs are aware that
white's king position is undesirable, but white is winning two pawns to compensate for this. At this point

white noticed that 33. Bd2, which prevents the coming check Qa5+, is refuted by 33.-- R:d2!; 34.

K:d2,Qa5+; 35. Ke2,Qa6+; and the black pieces will penetrate to mate the white king. This itself is a

deep calculation (since there is a tremendous difference between some checks and a mate), and it is only
because of the many extension mechanisms that Hitech 5.6 is able to see it at this point. Having realized
this, it now acquiesces in loss of some material, rather than play Bd2 which loses immediately. It should

be noted that B* Hitech understood it had a very good position after Rb2, but had not yet investigated

how to meet 33. Bd2. After the game, it found this refutation in four nodes. However, the most
impressive thing about this example is that when the colors are reversed, and 8" Hitech is given the task

of finding the 31st move for white, it also chooses 31. N:e5 as the selected move, BUT after 36 nodes of

verification finds the refutation, and plays 31. Bd2 instead.

33 Q:44 QaS+ 36 K:fl Q:d2
34 Bd2 R:d2 Although the material is
35 Q:d2 Rfl+ near even, black has a win.

Figure 15: White to Play

In the position of Figure 15, B* Hitech is playing white and it has a certain advantage because there is
insufficient shelter for the Black King. Hitech 5.6 as black is expecting 28. Qd7+ and has just found that

the intended reply Kb6, is not so good because of 29. Nd4 when black cannot play Q:d4 because of 30.
Qc6+,Ka5; 31. c3 and the threats to the queen and b4+ win. So it intended to meet 28. Qd7+ by Kb8 with

a marked inferiority, since Bc6 wins a pawn. However, B* Hitech has seen much further. It plays 28.

Qg411 relying on the fact that a move of the attacked bishop on g3 to (say) d6 would allow 29. Nh4! with
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the subsequent removal of the bishop at g6 and penetration of the white rook to Q7 with fatal effect. If this

is met by 29.-- Rf8; then 30. Rf3 allows the rook to penetrate on the Q-Side with devastating effect. If the

bishop goes to f2, then Ne5 has the same effect. In turn, Hitech 5.6 sees these things too after white's

28th move has been made. It then plays 28.-- Qc4 which both programs judge best.

may 15, 1994 such as B:c2, then white plays
White Black 35. Qd7 forcing Kb8 (Be4,ReO8
8* Nitech Hitoch 5.6 wins); 36. Q:dS,f6; 37. Kh2!

and black is helpless against
28 Qg41I QC4 the many threats to his king.
29 Q:g3+ Xb7 35 U:c7+ Kb7
30 Roll Q:a4 36 N:a6+ K:a6
31 Re7+ Ka8I 37 c3
32 Qc7 Qa6 Now black must lose either the

If 32.--RbS, 33. No5 and 8-pawn or one of the K-side
the threat of Xc6 is fatal. pawns after which he is

33 8d4! Ro8 hopelessly lost. A masterful
34 Hb51 R:c7 exploitation of a weak king

if black plays a waiting move position.

Figure 16: White to Play

Finally, we have an example of truly great play that would do justice to any Grandmaster. The position

of Figure 16 looks relatively even. White may have some chances with e4, but it is hard to see how to
make them work out. Further, black threatens to play g5 and/or h5 which would embarrass the white

pieces on the king's side. We are using this example to show how much further ahead 8" Hitech can
think than Brute-Force Hitech. We show the variations that each was relying on when it made the move it

played. The values at the right are in the usual style where the value of a pawn = 128, and plus is good

for white. The game continued:

June 2, 1994
White Black
B' Hitech Ritech 5.6

Principal Variation Value
23 Qb2I Qb2 hS e4 Wf:d4 e:d5 e:d5 Rfel+ KfS Ms3 -3

087 Qd7 Rfel h5 Mf2 Rag o4 d:e4 R:e4 0-0 32

24 .411 o4 Xfe7 Bd6 aS Rhbl Mc4 612
if .4 d:e4 dS e:d5 fse4 Nfe7 e:d5 Q:g4 d:c6 R:c6 1212
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White thinks d:e4 is not a good move.

d:e4 dte4 f:e4 Nf:d4 316 s5 h3 h5 Ne3 N.7
4S5 N:d5 e:dS h4 -38

But black thinks it gives him the advantage.

25 d511 d5 e:f3 d:e6 Qe7 Bd36 f2 Q:f2 N:d6 76

e:dS e:d5 f:e4 Nfe7 N*3 Na5 N:d5 N:dS R:d5 Qg4 75
Now black agrees it is good for white.

26 f:*4 f:e4 Nfe7 e:d5 Q:g4 d:c6 R:c6 Bd6 Qg5 121

White likes tha position even better.

Nfe7 Nte7 N.3 Nd8 N:d45 :dS R:dS Qa4 e5 0-0
Qa2 Xh8 Be3 94

They disagree on the best follow-up but both
think white has made further gains.

27 edS e:dS N:d5 Rfel+ Kf7 3416 Q:g4 Q:b7+ 34d17 B:e7 90
3:dS appears better than Q:g4 (liked earlier).

N:d5 X:d5 Rfel+ KV7 346 b5 Nf2 Nc7 Qb3+ Ne6 Bf8 Qc7
B:g7 K:g7 Q:e6 125

Black produces a line with many extensions and
realizes he is in trouble.

28 Ne3 Ne3 Ne*7 N:d5 N:d5 Rfel+ Kf7 316 Nc7 Re7+ Q:e7
B:e7 X:*7 Q*2+ Kf8 Rd7 Re8 Qd2 N.6 Qd6+ Kg8
R: b7 271
The price has gone up again.

Nce7 Nce7 N:d5 N:d5 Bd6 b5 Qb3 Ne7 Rfel Rd8 B:e7
Q:dl. 476

Too late black realizes he is lost.

29 :d45 N:d5 N:d5 Qe2+ Kf7 Q54+ 403

Nz.dS
30 Qe2+ Qe2K 1f7 Qh5+ Kf8 R:dS Q*6 411

Kfe8 f8 Bd6+ Kg8 Qc4 Qf7 Q:d5 Ra8 421

31 Qc4 Qc4 N43 B:e3 Qc6 3B4 422

Rd8 Rd8 Ra4 bS c:b6ep Qb7 Sc7 Rd7 Q43 153
In a hopeless position Kitsch has been
prograimed to make the last move that "looked
reasonable". It realizes this is not best,
and the value is based upon a 6-ply search
when a 9-ply search showed 1.8 best, but it
hopes for a faulty reply.

32 346+ Kg8
33 QsdS+ Qf7
34 3f.l QadS
35 Reds White has an easy win. It is interesting to see
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how the brute-force program does not understand
its problems until it is well into the situation
and can't get out.
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